iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-40567-9_2
Articulated Human Motion Tracking with Online Appearance Learning | SpringerLink
Skip to main content

Articulated Human Motion Tracking with Online Appearance Learning

  • Conference paper
Soft Computing Applications and Intelligent Systems (M-CAIT 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 378))

Included in the following conference series:

  • 884 Accesses

Abstract

Automatic tracking of the articulations of human from avideo sequence is a difficult task due to complex motions of the limbs, dynamic background, and varieties of poses. These challenges make it difficult to train a generative motion and appearance model to be used in different scenarios. In our work, we employ particle swarm optimization framework to avoid the need of motion model. Particularly, we propose a novel appearance learning strategy to learn the appearance of each body part in real time. Furthermore, we also propose an appearance model to represent the shape of each body part. Samples from UIUC dataset had been used in experiments. The results had shown that our method performed well on complex activities without motion model and online appearance training. It also showed the robustness of our method to recover from tracking failure in an occluded video.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bregler, C., Malik, J.: Tracking People with Twists and Exponential Maps. In: CVPR, pp. 8–15 (1998)

    Google Scholar 

  2. Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic Tracking of 3D Human Figures using 2D Image Motion. In: Vernon, D. (ed.) ECCV 2000, Part II. LNCS, vol. 1843, pp. 702–718. Springer, Heidelberg (2000)

    Google Scholar 

  3. Balan, A.O., Sigal, L., Black, M.J.: A Quantitative Evaluation of Video-based 3D Person Tracking. In: ICCCN, pp. 349–356 (2005)

    Google Scholar 

  4. Deutscher, J., Reid, I.: Articulated Body Motion Capture by Stochastic Search. Int. Journal of Computer Vision 61, 185–205 (2005)

    Article  Google Scholar 

  5. Chan, C.S., Liu, H., Brown, D.J., Kubota, N.: A Fuzzy Qualitative Approach to Human Motion Recognition. In: FUZZ-IEEE, pp. 1242–1249 (2008)

    Google Scholar 

  6. Ivekovic, S., John, V., Trucco, E.: Markerless Multi-view Articulated Pose Estimation using Adaptive Hierarchical Particle Swarm Optimisation. In: Di Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 241–250. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. John, V., Trucco, E., Ivekovic, S.: Markerless Human Articulated Tracking using Hierarchical Particle Swarm Optimisation. Image and Vision Computing 28, 1530–1547 (2010)

    Article  Google Scholar 

  8. Chan, C.S., Liu, H.: Fuzzy Qualitative Human Motion Analysis. IEEE Transactions on Fuzzy Systems 17(4), 851–862 (2009)

    Article  MathSciNet  Google Scholar 

  9. Sidenbladh, H., Black, M.J., Sigal, L.: Implicit Probabilistic Models of Human Motion for Synthesis and Tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 784–800. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Ikizler, N., Forsyth, D.: Searching for Complex Human Activities with No Visual Examples. Int. Journal of Comp. Vision 80, 337–357 (2008)

    Article  Google Scholar 

  11. Yang, Y., Ramanan, D.: Articulated Human Detection with Flexible Mixtures of Parts. IEEE Transactions on Pattern Anal. and Machine Intelligence (in press)

    Google Scholar 

  12. Ramanan, D., Forsyth, D., Zisserman, A.: Tracking People by Learning Their Appearance. IEEE Transactions on Pattern Anal. and Machine Intelligence 29, 65–81 (2007)

    Article  Google Scholar 

  13. Cifuentes, C.G., Sturzel, M., Jurie, F., Brostow, G.: Motion Models that Only Work Sometimes. In: BMVC, Surrey, pp. 55.1–55.12 (2012)

    Google Scholar 

  14. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR, San Diego, pp. 886–893 (2005)

    Google Scholar 

  15. Czyz, J., Ristic, B., Macq, B.: A Particle Filter for Joint Detection and Tracking of Color Object. Image and Vision Computing 25, 1271–1281 (2007)

    Article  Google Scholar 

  16. Tan, W.R., Chan, C.S., Yogarajah, P., Condell, J.: A Fusion Approach for Efficient Human Skin Detection. IEEE Transactions on Industrial Informatics 8(1), 138–147 (2012)

    Article  Google Scholar 

  17. Plänkers, R., Fua, P.: Model-based Silhouette Extraction for Accurate People Tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part II. LNCS, vol. 2351, pp. 325–339. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Balan, A.O., Black, M.J.: An Adaptive Appearance Model Approach for Model-based Articulated Object Tracking. In: CVPR, New York, pp. 758–765 (2006)

    Google Scholar 

  19. Chan, C.S., Liu, H., Lai, W.K.: Fuzzy Qualitative Complex Actions Recognition. In: FUZZ-IEEE, Barcelona, pp. 1–8 (2008)

    Google Scholar 

  20. Jepson, A., Fleet, D., El-Maraghi, T.: Robust Online Appearance Models for Visual Tracking. IEEE Transactions on Pattern Anal. and Machine Intelligence 25, 1296–1311 (2003)

    Article  Google Scholar 

  21. Kalal, Z., Mikolajczyk, K., Matas, J.: Face-tld: Tracking-learning-detection Applied to Faces. In: ICIP, Hong Kong, pp. 3789–3792 (2010)

    Google Scholar 

  22. Piccardi, M.: Background Subtraction Techniques: A Review. In: IEEE SMC, The Hague, vol. 4, pp. 3099–3104 (2004)

    Google Scholar 

  23. Chutatape, O., Guo, L.: A Modified Hough Transform for Line Detection and Its Performance. Pattern Recognition 32, 181–192 (1999)

    Article  Google Scholar 

  24. Beauchemin, S.S., Barron, J.L.: The Computation of Optical Flow. ACM Computing Surveys 27, 433–466 (1995)

    Article  Google Scholar 

  25. Helwig, S., Wanka, R.: Particle Swarm Optimization in High-dimentional Bounded Search Spaces. In: SIS, Honolulu, pp. 198–205 (2007)

    Google Scholar 

  26. Lim, M.K., Chan, C.S., Monekosso, D., Remagnino, P.: SwATrack: A Swarm Intelligence-based Abrupt Motion Tracker. In: IAPR MVA, Kyoto (2013)

    Google Scholar 

  27. Lu, H., Yen, G.: Dynamic Population Size in Multiobjective Evolutionary Algorithms. In: CEC, Hawaii, vol. 2, pp. 1648–1653 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tan, W.R., Chan, C.S., Aguirre, H.E., Tanaka, K. (2013). Articulated Human Motion Tracking with Online Appearance Learning. In: Noah, S.A., et al. Soft Computing Applications and Intelligent Systems. M-CAIT 2013. Communications in Computer and Information Science, vol 378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40567-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40567-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40566-2

  • Online ISBN: 978-3-642-40567-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics