Abstract
There are several attempts to build asymmetric pubic key encryption schemes based on multivariate polynomials of degree two over a finite field. However, most of them are insecure. The common defect in many of them comes from the fact that certain quadratic forms associated with their central maps have low rank, which makes them vulnerable to the MinRank attack. We propose a new simple and efficient multivariate pubic key encryption scheme based on matrix multiplication, which does not have such a low rank property. The new scheme will be called Simple Matrix Scheme or ABC in short. We also propose some parameters for practical and secure implementation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bosma, W., Cannon, J.J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24(3-4), 235–265 (1997)
Bettale, L., Faugère, J.-C., Perret, L.: Cryptanalysis of multivariate and odd-characteristic HFE variants. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 441–458. Springer, Heidelberg (2011)
Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000)
Ding, J., Schmidt, D., Werner, F.: Algebraic attack on HFE revisited. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 215–227. Springer, Heidelberg (2008)
Ding, J., Gower, J., Schmidt, D.: Multivariate Public Key Cryptography. Advances in Information Security series. Springer, Heidelberg (2006)
Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New Differential-Algebraic Attacks and Reparametrization of Rainbow. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257. Springer, Heidelberg (2008)
Ding, J., Hu, L., Nie, X., Li, J., Wagner, J.: High Order Linearization Equation (HOLE) Attack on Multivariate Public Key Cryptosystems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 233–248. Springer, Heidelberg (2007)
Ding, J., Hodges, T.J.: Inverting HFE systems is quasi-polynomial for all fields. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 724–742. Springer, Heidelberg (2011)
Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139, 61–88 (1999)
Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of minRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008)
Kipnis, A., Shamir, A.: Cryptanalysis of the Oil & Vinegar Signature Scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–267. Springer, Heidelberg (1998)
Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)
Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)
Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its applications, vol. 20. Cambridge University Press
Moh, T.T.: A fast public key system with signature and master key functions. In: Proceedings of CrypTEC 1999, International Workshop on Cryptographic Techniques and E-Commerce, pp. 63–69. Hong-Kong City University Press (July 1999), http://www.usdsi.com/cryptec.ps
Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)
Patarin, J.: The Oil and Vinegar Signature Scheme. Presented at the Dagstuhl Workshop on Cryptography (September 1997) (transparencies)
Patarin, J.: Cryptoanalysis of the Matsumoto and Imai public key scheme of Eurocrypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)
Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)
Rivest, R., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126
Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)
Wang, L.-C., Yang, B.-Y., Hu, Y.-H., Lai, F.: A “Medium-Field” Multivariate Public-Key Encryption Scheme. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 132–149. Springer, Heidelberg (2006)
Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M., et al. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257. Springer, Heidelberg (2008)
Thomae, E.: A Generalization of the Rainbow Band Separation Attack and its Applications to Multivariate Schemes. IACR Cryptology ePrint Archive (2012)
Buchmann, J.A., Ding, J., Mohamed, M.S.E., et al.: MutantXL: Solving multivariate polynomial equations for cryptanalysis. Symmetric Cryptography, 09031 (2009)
Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving polynomial equations over GF(2) using an improved mutant strategy. In: Buchmann, J., Ding, J., et al. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer, Heidelberg (2008)
Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3: An efficient algorithm for computing gröbner bases of zero-dimensional ideals. In: Lee, D., Hong, S., et al. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 87–100. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tao, C., Diene, A., Tang, S., Ding, J. (2013). Simple Matrix Scheme for Encryption. In: Gaborit, P. (eds) Post-Quantum Cryptography. PQCrypto 2013. Lecture Notes in Computer Science, vol 7932. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38616-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-38616-9_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38615-2
Online ISBN: 978-3-642-38616-9
eBook Packages: Computer ScienceComputer Science (R0)