iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-38616-9_16
Simple Matrix Scheme for Encryption | SpringerLink
Skip to main content

Simple Matrix Scheme for Encryption

  • Conference paper
Post-Quantum Cryptography (PQCrypto 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7932))

Included in the following conference series:

Abstract

There are several attempts to build asymmetric pubic key encryption schemes based on multivariate polynomials of degree two over a finite field. However, most of them are insecure. The common defect in many of them comes from the fact that certain quadratic forms associated with their central maps have low rank, which makes them vulnerable to the MinRank attack. We propose a new simple and efficient multivariate pubic key encryption scheme based on matrix multiplication, which does not have such a low rank property. The new scheme will be called Simple Matrix Scheme or ABC in short. We also propose some parameters for practical and secure implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bosma, W., Cannon, J.J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24(3-4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bettale, L., Faugère, J.-C., Perret, L.: Cryptanalysis of multivariate and odd-characteristic HFE variants. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 441–458. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Ding, J., Schmidt, D., Werner, F.: Algebraic attack on HFE revisited. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 215–227. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Ding, J., Gower, J., Schmidt, D.: Multivariate Public Key Cryptography. Advances in Information Security series. Springer, Heidelberg (2006)

    Google Scholar 

  6. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New Differential-Algebraic Attacks and Reparametrization of Rainbow. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Ding, J., Hu, L., Nie, X., Li, J., Wagner, J.: High Order Linearization Equation (HOLE) Attack on Multivariate Public Key Cryptosystems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 233–248. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Ding, J., Hodges, T.J.: Inverting HFE systems is quasi-polynomial for all fields. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 724–742. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139, 61–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of minRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Kipnis, A., Shamir, A.: Cryptanalysis of the Oil & Vinegar Signature Scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–267. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its applications, vol. 20. Cambridge University Press

    Google Scholar 

  15. Moh, T.T.: A fast public key system with signature and master key functions. In: Proceedings of CrypTEC 1999, International Workshop on Cryptographic Techniques and E-Commerce, pp. 63–69. Hong-Kong City University Press (July 1999), http://www.usdsi.com/cryptec.ps

  16. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  17. Patarin, J.: The Oil and Vinegar Signature Scheme. Presented at the Dagstuhl Workshop on Cryptography (September 1997) (transparencies)

    Google Scholar 

  18. Patarin, J.: Cryptoanalysis of the Matsumoto and Imai public key scheme of Eurocrypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)

    Google Scholar 

  19. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  20. Rivest, R., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126

    Google Scholar 

  21. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, L.-C., Yang, B.-Y., Hu, Y.-H., Lai, F.: A “Medium-Field” Multivariate Public-Key Encryption Scheme. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 132–149. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M., et al. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Thomae, E.: A Generalization of the Rainbow Band Separation Attack and its Applications to Multivariate Schemes. IACR Cryptology ePrint Archive (2012)

    Google Scholar 

  25. Buchmann, J.A., Ding, J., Mohamed, M.S.E., et al.: MutantXL: Solving multivariate polynomial equations for cryptanalysis. Symmetric Cryptography, 09031 (2009)

    Google Scholar 

  26. Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving polynomial equations over GF(2) using an improved mutant strategy. In: Buchmann, J., Ding, J., et al. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3: An efficient algorithm for computing gröbner bases of zero-dimensional ideals. In: Lee, D., Hong, S., et al. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 87–100. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tao, C., Diene, A., Tang, S., Ding, J. (2013). Simple Matrix Scheme for Encryption. In: Gaborit, P. (eds) Post-Quantum Cryptography. PQCrypto 2013. Lecture Notes in Computer Science, vol 7932. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38616-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38616-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38615-2

  • Online ISBN: 978-3-642-38616-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics