Abstract
This paper connects multi-agent path planning on graphs (roadmaps) to network flow problems, showing that the former can be reduced to the latter, therefore enabling the application of combinatorial network flow algorithms, as well as general linear program techniques, tomulti-agent path planning problems on graphs. Exploiting this connection, we show that when the goals are permutation invariant, the problem always has a feasible solution path set with a longest finish time of no more than n + V - 1 steps, in which n is the number of agents and V is the number of vertices of the underlying graph.We then give a complete algorithm that finds such a solution in O(nVE) time, with E being the number of edges of the graph. Taking a further step, we study time and distance optimality of the feasible solutions, show that they have a pairwise Pareto optimal structure, and again provide efficient algorithms for optimizing two of these practical objectives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aronson, J.E.: A survey on dynamic network flows. Annals of Operations Research 20(1), 1–66 (1989)
Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Transaction on Robotics and Automation 14(6), 926–939 (1998)
Canny, J.F.: The Complexity of Robot Motion Planning. MIT Press, Cambridge (1988)
Chalmet, L.G., Francis, R.L., Saunders, P.B.: Network models for building evacuation. Management Science 28(1), 86–105 (1982)
Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)
Collins, G.E.: Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)
Costa, M.-C., Létocart, L., Roupin, F.: Minimal Multicut and Maximal Integer Multiflow: A Survey. European Journal of Operational Research 162, 55–69 (2005)
Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)
Erdmann, M.A., Lozano-Pérez, T.: On multiple moving objects. In: Proceedings IEEE International Conference on Robotics & Automation, pp. 1419–1424 (1986)
Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Research Memorandum RM-1400, The RAND Corporation (November 1954)
Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Operations Research 6, 419–433 (1958)
Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, New Jersey (1962)
Fox, D., Burgard, W., Kruppa, H., Thrun, S.: A probabilistic approach to collaborative multi-robot localization. Autom. Robots 8(3), 325–344 (2000)
Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. In: STOC 1986: Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, pp. 136–146. ACM, New York (1986)
Grötschel, M., Schrijver, A., Lovász, L.: Complexity, Oracles, and Numerical Computation. Springer (1988)
Guo, Y., Parker, L.E.: A distributed and optimal motion planning approach for multiple mobile robots. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2612–2619 (2002)
Halperin, D., Latombe, J.-C., Wilson, R.: A general framework for assembly planning: The motion space approach. Algorithmica 26(3-4), 577–601 (2000)
Hoppe, B., Tardos, É.: The quickest transshipment problem. Mathematics of Operations Research 25(1), 36–62 (2000)
Jennings, J.S., Whelan, G., Evans, W.F.: Cooperative search and rescue with a team of mobile robots. In: Proceedings IEEE International Conference on Robotics & Automation (1997)
Kant, K., Zucker, S.: Towards efficient trajectory planning: The path velocity decomposition. International Journal of Robotics Research 5(3), 72–89 (1986)
Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics & Automation 12(4), 566–580 (1996)
Kloder, S., Hutchinson, S.: Path planning for permutation-invariant multirobot formations. IEEE Transactions on Robotics 22(4), 650–665 (2006)
Latombe, J.-C.: Robot Motion Planning. Kluwer, Boston (1991)
LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning. TR 98-11, Computer Science Dept., Iowa State University (October 1998)
LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006), http://planning.cs.uiuc.edu/
Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Communications of the ACM 22(10), 560–570 (1979)
Luna, R., Bekris, K.E.: Push and swap: Fast cooperative path-finding with completeness guarantees. In: Twenty-Second International Joint Conference on Artificial Intelligence, pp. 294–300 (2011)
Matarić, M.J., Nilsson, M., Simsarian, K.T.: Cooperative multi-robot box pushing. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 556–561 (1995)
Miklic, D., Bogdan, S., Fierro, R., Nestic, S.: A discrete grid abstraction for formation control in the presence of obstacles. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3750–3755 (2009)
Nnaji, B.: Theory of Automatic Robot Assembly and Programming. Chapman and Hall (1992)
O’Donnell, P.A., Lozano-Pérez, T.: Deadlock-free and collision-free coordination of two robot manipulators. In: Proceedings IEEE International Conference on Robotics & Automation, pp. 484–489 (1989)
O’Dúnlaing, C., Yap, C.K.: A retraction method for planning the motion of a disc. Journal of Algorithms 6, 104–111 (1982)
Peasgood, M., Clark, C., McPhee, J.: A complete and scalable strategy for coordinating multiple robots within roadmaps. IEEE Transactions on Robotics 24(2), 283–292 (2008)
Peng, J., Akella, S.: Coordinating Multiple Robots with Kinodynamic Constraints along Specified Paths. In: Boissonat, J.-D., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundations of Robotics V. STAR, vol. 7, pp. 221–237. Springer, Heidelberg (2004)
Poduri, S., Sukhatme, G.S.: Constrained coverage for mobile sensor networks. In: Proceedings IEEE International Conference on Robotics & Automation (2004)
Rodriguez, S., Amato, N.M.: Behavior-based evacuation planning. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 350–355 (2010)
Rus, D., Donald, B., Jennings, J.: Moving furniture with teams of autonomous robots. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 235–242 (1995)
Shucker, B., Murphey, T., Bennett, J.K.: Switching rules for decentralized control with simple control laws. In: American Control Conference (July 2007)
Siméon, T., Leroy, S., Laumond, J.-P.: Path coordination for multiple mobile robots: A resolution complete algorithm. IEEE Transactions on Robotics & Automation 18(1) (February 2002)
Smith, B., Egerstedt, M., Howard, A.: Automatic generation of persistent formations for multi-agent networks under range constraints. ACM/Springer Mobile Networks and Applications Journal 14(3), 322–335 (2009)
Surynek, P.: An optimization variant of multi-robot path planning is intractable. In: The Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 1261–1263 (2010)
Tanner, H., Pappas, G., Kumar, V.: Leader-to-formation stability. IEEE Transactions on Robotics and Automation 20(3), 443–455 (2004)
Tardos, É.: A strongly polynomial minimum cost circulation algorithm. Combinatorica 5(3), 247–255 (1985)
van den Berg, J., Overmars, M.: Prioritized motion planning for multiple robots. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (2005)
van den Berg, J., Snoeyink, J., Lin, M., Manocha, D.: Centralized path planning for multiple robots: Optimal decoupling into sequential plans. In: Proceedings Robotics: Science and Systems (2009)
Švestka, P., Overmars, M.H.: Coordinated path planning for multiple robots. Robotics and Autonomous Systems 23, 125–152 (1998)
Wang, K.-H.C., Botea, A.: Tractable multi-agent path planning on grid maps. In: Proceedings of the 21st International Jont Conference on Artifical Intelligence, IJCAI 2009, pp. 1870–1875. Morgan Kaufmann Publishers Inc., San Francisco (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yu, J., LaValle, S.M. (2013). Multi-agent Path Planning and Network Flow. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds) Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36279-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-36279-8_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36278-1
Online ISBN: 978-3-642-36279-8
eBook Packages: EngineeringEngineering (R0)