Abstract
Linked Stream Data, i.e., the RDF data model extended for representing stream data generated from sensors social network applications, is gaining popularity. This has motivated considerable work on developing corresponding data models associated with processing engines. However, current implemented engines have not been thoroughly evaluated to assess their capabilities. For reasonable systematic evaluations, in this work we propose a novel, customizable evaluation framework and a corresponding methodology for realistic data generation, system testing, and result analysis. Based on this evaluation environment, extensive experiments have been conducted in order to compare the state-of-the-art LSD engines wrt. qualitative and quantitative properties, taking into account the underlying principles of stream processing. Consequently, we provide a detailed analysis of the experimental outcomes that reveal useful findings for improving current and future engines.
This research has been supported by Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-II), by Marie Curie action IRSES under Grant No. 24761 (Net2), by the Austrian Science Fund (FWF) project P20841, and by the European Commission under contract number FP720117287661 (GAMBAS) and FP72007257943 (LOD2).
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Alani, H., Szomszor, M., Cattuto, C., Van den Broeck, W., Correndo, G., Barrat, A.: Live Social Semantics. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 698–714. Springer, Heidelberg (2009)
Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language for event processing and stream reasoning. In: WWW, pp. 635–644 (2011)
Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and query execution. The VLDB Journal 15(2), 121–142 (2006)
Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A.S., Ryvkina, E., Stonebraker, M., Tibbetts, R.: Linear road: a stream data management benchmark. In: VLDB, pp. 480–491 (2004)
Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment for C-SPARQL queries. In: EDBT, pp. 441–452. ACM (2010)
Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semantic Web Inf. Syst. 5(2), 1–24 (2009)
Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL - Extending SPARQL to Process Data Streams. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 448–462. Springer, Heidelberg (2008)
Bouillet, E., Feblowitz, M., Liu, Z., Ranganathan, A., Riabov, A., Ye, F.: A Semantics-Based Middleware for Utilizing Heterogeneous Sensor Networks. In: Aspnes, J., Scheideler, C., Arora, A., Madden, S. (eds.) DCOSS 2007. LNCS, vol. 4549, pp. 174–188. Springer, Heidelberg (2007)
Calbimonte, J.-P., Corcho, O., Gray, A.J.G.: Enabling Ontology-Based Access to Streaming Data Sources. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 96–111. Springer, Heidelberg (2010)
Celino, I., Dell’Aglio, D., Valle, E.D., Balduini, M., Huang, Y., Lee, T., Kim, S.-H., Tresp, V.: Bottari: Location based social media analysis with semantic web. In: ISWC (2011)
Duan, S., Kementsietsidis, A., Srinivas, K., Udrea, O.: Apples and oranges: a comparison of rdf benchmarks and real rdf datasets. In: SIGMOD, pp. 145–156 (2011)
Golab, L., Özsu, M.T.: Data stream management. Synthesis Lectures on Data Management, pp. 1–73 (2010)
Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for owl knowledge base systems. Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3), 158–182 (2005)
Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A Native and Adaptive Approach for Unified Processing of Linked Streams and Linked Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011)
Le-Phuoc, D., Xavier Parreira, J., Hauswirth, M.: Linked Stream Data Processing. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 245–289. Springer, Heidelberg (2012)
Minh Duc, P., Boncz, P.A., Erling, O.: S3G2: A Scalable Structure-Correlated Social Graph Generator. In: TPCTC, Turkey, (2012)
Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: Sp2bench: A SPARQL performance benchmark. In: ICDE, pp. 222–233 (2009)
Sequeda, J.F., Corcho, O.: Linked stream data: A position paper. In: SSN (2009)
Sheth, A., Henson, C., Sahoo, S.S.: Semantic sensor web. IEEE Internet Computing (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Le-Phuoc, D., Dao-Tran, M., Pham, MD., Boncz, P., Eiter, T., Fink, M. (2012). Linked Stream Data Processing Engines: Facts and Figures. In: Cudré-Mauroux, P., et al. The Semantic Web – ISWC 2012. ISWC 2012. Lecture Notes in Computer Science, vol 7650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35173-0_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-35173-0_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35172-3
Online ISBN: 978-3-642-35173-0
eBook Packages: Computer ScienceComputer Science (R0)