Abstract
Aiming at more efficient search on the Internet, it seems adequate to deploy classification techniques using semantic resources restricting this search to the user’s domain of interest. In this work, we try to assess the impact of integrating semantic knowledge on text classification. This integration can be realized in different ways. The one we choose in this paper is the conceptualization. We examine the impact of the different conceptualization strategies on text classification using three traditional text classification methods: Rocchio, Support Vector Machines (SVMs) and Naïve Bayes (NB). We restrain our experimentation to the biomedical domain so conceptualization is applied on OHSUMED corpus, mapping terms in text to their corresponding concepts in UMLS Metathesaurus in order to take their meaning into consideration during text classification. Rocchio, SVMs, and NB are tested using different conceptualization strategies in order to evaluate their effect on classification. Preliminary results demonstrate promising improvements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asirvatham, A.P., Ravi, K.K.: Web page classification based on document structure (2001)
Ferreira, R., et al.: Improving News Web Page Classification Through Content Extraction. In: IADIS International Conference WWW/Internet 2011 (2011)
Sebastiani, F.: Machine learning in automated text categorization. ACM Computer. Survey 34(1), 1–47 (2002)
Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)
Hotho, A., Staab, S., Stumme, G.: Text clustering based on background knowledge (2003)
Ferretti, E., Errecalde, M., Rosso, P.: Does Semantic Information Help in the Text Categorization Task? Journal of Intelligent Systems 17, 91–107 (2008)
Garla, V.N., Brandt, C.: Ontology-guided feature engineering for clinical text classification. J. Biomed. Inform. (in press)
Yetisgen-Yildiz, M., Pratt, W.: The effect of feature representation on MEDLINE document classification. In: AMIA Annu. Symp., pp. 849–853 (2005)
Zhang, X., Jing, L., Hu, X., Ng, M., Zhou, X.: A Comparative Study of Ontology Based Term Similarity Measures on PubMed Document Clustering. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 115–126. Springer, Heidelberg (2007)
Camous, F., Blott, S., Smeaton, A.F.: Ontology-Based MEDLINE Document Classification. In: Hochreiter, S., Wagner, R. (eds.) BIRD 2007. LNCS (LNBI), vol. 4414, pp. 439–452. Springer, Heidelberg (2007)
Unified Medical Language System (UMLS®), http://www.nlm.nih.gov/research/umls/
Aronson, A.R., Lang, F.M.: An overview of MetaMap: historical perspective and recent advances. J. Am Med. Inform. Assoc. 17(3), 229–236 (2010)
Hersh, W., et al.: OHSUMED: an interactive retrieval evaluation and new large test collection for research. In: 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 192–201. Springer-Verlag New York, Inc., Dublin (1994)
Medical Subject Headings (MeSH®), http://www.nlm.nih.gov/pubs/factsheets/mesh.html
Yi, K., Beheshti, J.: A hidden Markov model-based text classification of medical documents. J. Inf. Sci 35(1), 67–81 (2009)
Huang, A.: Similarity measures for text document clustering. In: Sixth New Zealand Computer Science Research Student Conference, Christchurch, New Zealand, pp. 49–56 (2008)
Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)
Hall, M., et al.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Information Processing Management 45(4), 427–437 (2009)
Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998)
Séaghdha, D.O.: Semantic classification with WordNet kernels. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers, pp. 237–240. Association for Computational Linguistics, Boulder (2009)
Lan, M., et al.: Supervised and Traditional Term Weighting Methods for Automatic Text Categorization. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 721–735 (2009)
Li, Z., Li, P., Wei, W., Liu, H., He, J., Liu, T., Du, X.: AutoPCS: A Phrase-Based Text Categorization System for Similar Texts. In: Li, Q., Feng, L., Pei, J., Wang, S.X., Zhou, X., Zhu, Q.-M., et al. (eds.) APWeb/WAIM 2009. LNCS, vol. 5446, pp. 369–380. Springer, Heidelberg (2009)
Bloehdorn, S., Hotho, A.: Boosting for Text Classification with Semantic Features. In: Mobasher, B., Nasraoui, O., Liu, B., Masand, B. (eds.) WebKDD 2004. LNCS (LNAI), vol. 3932, pp. 149–166. Springer, Heidelberg (2006)
Bai, R., Wang, X., Liao, J.: Using an Integrated Ontology Database to Categorize Web Pages. In: Kim, T.-H., Adeli, H. (eds.) AST/UCMA/ISA/ACN 2010. LNCS, vol. 6059, pp. 300–309. Springer, Heidelberg (2010)
Guisse, A., Khelif, K., Collard, M.: PatClust: une plateforme pour la classification sémantique des brevets. In: Conférence d’Ingénierie des connaissances, Hammamet, Tunisie (2009)
Peng, X., Choi, B.: Document classifications based on word semantic hierarchies. In: International Conference on Artificial Intelligence and Applications (AIA 2005), pp. 362–367 (2005)
Wang, J.Z., Taylor, W.: Concept Forest: A New Ontology-assisted Text Document Similarity Measurement Method. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence 2007, pp. 395–401. IEEE Computer Society (2006)
Stein, B., Eissen, S.M.Z., Potthast, M.: Syntax versus semantics: Analysis of enriched vector space models. In: Third International Workshop on Text-Based Information Retrieval (TIR 2006). University of Trento, Italy (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Albitar, S., Fournier, S., Espinasse, B. (2012). The Impact of Conceptualization on Text Classification. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds) Web Information Systems Engineering - WISE 2012. WISE 2012. Lecture Notes in Computer Science, vol 7651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35063-4_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-35063-4_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35062-7
Online ISBN: 978-3-642-35063-4
eBook Packages: Computer ScienceComputer Science (R0)