iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-35063-4_24
The Impact of Conceptualization on Text Classification | SpringerLink
Skip to main content

The Impact of Conceptualization on Text Classification

  • Conference paper
Web Information Systems Engineering - WISE 2012 (WISE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7651))

Included in the following conference series:

Abstract

Aiming at more efficient search on the Internet, it seems adequate to deploy classification techniques using semantic resources restricting this search to the user’s domain of interest. In this work, we try to assess the impact of integrating semantic knowledge on text classification. This integration can be realized in different ways. The one we choose in this paper is the conceptualization. We examine the impact of the different conceptualization strategies on text classification using three traditional text classification methods: Rocchio, Support Vector Machines (SVMs) and Naïve Bayes (NB). We restrain our experimentation to the biomedical domain so conceptualization is applied on OHSUMED corpus, mapping terms in text to their corresponding concepts in UMLS Metathesaurus in order to take their meaning into consideration during text classification. Rocchio, SVMs, and NB are tested using different conceptualization strategies in order to evaluate their effect on classification. Preliminary results demonstrate promising improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asirvatham, A.P., Ravi, K.K.: Web page classification based on document structure (2001)

    Google Scholar 

  2. Ferreira, R., et al.: Improving News Web Page Classification Through Content Extraction. In: IADIS International Conference WWW/Internet 2011 (2011)

    Google Scholar 

  3. Sebastiani, F.: Machine learning in automated text categorization. ACM Computer. Survey 34(1), 1–47 (2002)

    Article  Google Scholar 

  4. Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Hotho, A., Staab, S., Stumme, G.: Text clustering based on background knowledge (2003)

    Google Scholar 

  6. Ferretti, E., Errecalde, M., Rosso, P.: Does Semantic Information Help in the Text Categorization Task? Journal of Intelligent Systems 17, 91–107 (2008)

    Article  Google Scholar 

  7. Garla, V.N., Brandt, C.: Ontology-guided feature engineering for clinical text classification. J. Biomed. Inform. (in press)

    Google Scholar 

  8. Yetisgen-Yildiz, M., Pratt, W.: The effect of feature representation on MEDLINE document classification. In: AMIA Annu. Symp., pp. 849–853 (2005)

    Google Scholar 

  9. Zhang, X., Jing, L., Hu, X., Ng, M., Zhou, X.: A Comparative Study of Ontology Based Term Similarity Measures on PubMed Document Clustering. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 115–126. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Camous, F., Blott, S., Smeaton, A.F.: Ontology-Based MEDLINE Document Classification. In: Hochreiter, S., Wagner, R. (eds.) BIRD 2007. LNCS (LNBI), vol. 4414, pp. 439–452. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Unified Medical Language System (UMLS®), http://www.nlm.nih.gov/research/umls/

  12. Aronson, A.R., Lang, F.M.: An overview of MetaMap: historical perspective and recent advances. J. Am Med. Inform. Assoc. 17(3), 229–236 (2010)

    Google Scholar 

  13. Hersh, W., et al.: OHSUMED: an interactive retrieval evaluation and new large test collection for research. In: 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 192–201. Springer-Verlag New York, Inc., Dublin (1994)

    Google Scholar 

  14. Medical Subject Headings (MeSH®), http://www.nlm.nih.gov/pubs/factsheets/mesh.html

  15. Yi, K., Beheshti, J.: A hidden Markov model-based text classification of medical documents. J. Inf. Sci 35(1), 67–81 (2009)

    Article  Google Scholar 

  16. Huang, A.: Similarity measures for text document clustering. In: Sixth New Zealand Computer Science Research Student Conference, Christchurch, New Zealand, pp. 49–56 (2008)

    Google Scholar 

  17. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

  18. Hall, M., et al.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  19. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Information Processing Management 45(4), 427–437 (2009)

    Article  Google Scholar 

  20. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998)

    Article  Google Scholar 

  21. Séaghdha, D.O.: Semantic classification with WordNet kernels. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers, pp. 237–240. Association for Computational Linguistics, Boulder (2009)

    Google Scholar 

  22. Lan, M., et al.: Supervised and Traditional Term Weighting Methods for Automatic Text Categorization. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 721–735 (2009)

    Article  Google Scholar 

  23. Li, Z., Li, P., Wei, W., Liu, H., He, J., Liu, T., Du, X.: AutoPCS: A Phrase-Based Text Categorization System for Similar Texts. In: Li, Q., Feng, L., Pei, J., Wang, S.X., Zhou, X., Zhu, Q.-M., et al. (eds.) APWeb/WAIM 2009. LNCS, vol. 5446, pp. 369–380. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Bloehdorn, S., Hotho, A.: Boosting for Text Classification with Semantic Features. In: Mobasher, B., Nasraoui, O., Liu, B., Masand, B. (eds.) WebKDD 2004. LNCS (LNAI), vol. 3932, pp. 149–166. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Bai, R., Wang, X., Liao, J.: Using an Integrated Ontology Database to Categorize Web Pages. In: Kim, T.-H., Adeli, H. (eds.) AST/UCMA/ISA/ACN 2010. LNCS, vol. 6059, pp. 300–309. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Guisse, A., Khelif, K., Collard, M.: PatClust: une plateforme pour la classification sémantique des brevets. In: Conférence d’Ingénierie des connaissances, Hammamet, Tunisie (2009)

    Google Scholar 

  27. Peng, X., Choi, B.: Document classifications based on word semantic hierarchies. In: International Conference on Artificial Intelligence and Applications (AIA 2005), pp. 362–367 (2005)

    Google Scholar 

  28. Wang, J.Z., Taylor, W.: Concept Forest: A New Ontology-assisted Text Document Similarity Measurement Method. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence 2007, pp. 395–401. IEEE Computer Society (2006)

    Google Scholar 

  29. Stein, B., Eissen, S.M.Z., Potthast, M.: Syntax versus semantics: Analysis of enriched vector space models. In: Third International Workshop on Text-Based Information Retrieval (TIR 2006). University of Trento, Italy (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Albitar, S., Fournier, S., Espinasse, B. (2012). The Impact of Conceptualization on Text Classification. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds) Web Information Systems Engineering - WISE 2012. WISE 2012. Lecture Notes in Computer Science, vol 7651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35063-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35063-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35062-7

  • Online ISBN: 978-3-642-35063-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics