iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-34481-7_28
A Real-Time, Event-Driven Neuromorphic System for Goal-Directed Attentional Selection | SpringerLink
Skip to main content

A Real-Time, Event-Driven Neuromorphic System for Goal-Directed Attentional Selection

  • Conference paper
Neural Information Processing (ICONIP 2012)

Abstract

Computation with spiking neurons takes advantage of the abstraction of action potentials into streams of stereotypical events, which encode information through their timing. This approach both reduces power consumption and alleviates communication bottlenecks. A number of such spiking custom mixed-signal address event representation (AER) chips have been developed in recent years.

In this paper, we present i) a flexible event-driven platform consisting of the integration of a visual AER sensor and the SpiNNaker system, a programmable massively parallel digital architecture oriented to the simulation of spiking neural networks; ii) the implementation of a neural network for feature-based attentional selection on this platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Knudsen, E.: Fundamental components of attention. Annu. Rev. Neurosci. 30, 57–78 (2007)

    Article  Google Scholar 

  2. Van Rullen, R., Thorpe, S.J.: Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput. 13(6), 1255–1283 (2001)

    Article  MATH  Google Scholar 

  3. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128x128 120dB 15us Latency Asynchronous Temporal Contrast Vision Sensor. IEEE J. Solid State Circuits 43, 566–576 (2008)

    Article  Google Scholar 

  4. Lenero-Bardallo, J.A., Serrano-Gotarredona, T., Linares-Barranco, B.: A 3.6 us Latency Asynchronous Frame-Free Event-Driven Dynamic-Vision-Sensor. IEEE Journal of Solid State Circuits 46(6), 1443–1455 (2011)

    Article  Google Scholar 

  5. Sonnleithner, D., Indiveri, G.: A Neuromorphic Saliency-Map based Active Vision System. Neuroinformatics, 1–6 (2011)

    Google Scholar 

  6. Indiveri, G., Linares-Barranco, B., Hamilton, T.J., Van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.C., Dudek, P., Häfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., Saighi, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., Boahen, K.: Neuromorphic Silicon Neuron Circuits. Front. Neurosci. 5 (2011)

    Google Scholar 

  7. Wijekoon, J.H.B., Dudek, P.: VLSI circuits implementing computational models of neocortical circuits. J. Neurosci. Meth. (2012)

    Google Scholar 

  8. Furber, S., Brown, A.: Biologically-Inspired Massively-Parallel Architectures - Computing Beyond a Million Processors. In: 2009 Ninth International Conference on Application of Concurrency to System Design, ACSD 2009, pp. 3–12. IEEE, Washington, DC (2009)

    Chapter  Google Scholar 

  9. Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz- Vicente, R., Gomez-Rodriguez, F., Camunas-Mesa, L., Berner, R., Rivas-Perez, M., Delbruck, T., Liu, S.C., Douglas, R., Hafliger, P., Jimenez-Moreno, G., Civit Ballcels, A., Serrano-Gotarredona, T., Acosta-Jimenez, A.J., Linares-Barranco, B.: CAVIAR: a 45k neuron, 5M synapse, 12G connects/s AER hardware sensoryprocessing-learning-actuating system for high-speed visual object recognition and tracking. IEEE Trans. Neural. Netw. 20(9), 1417–1438 (2009)

    Article  Google Scholar 

  10. Davies, S., Patterson, C., Galluppi, F.: Interfacing Real-Time Spiking I/O with the SpiNNaker neuromimetic architecture. AJIIPS 11(1) (2010)

    Google Scholar 

  11. Davison, A.P., Bruderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., Yger, P.: PyNN: A Common Interface for Neuronal Network Simulators. Front. Neuroinform. 2 (2008)

    Google Scholar 

  12. Galluppi, F., Davies, S., Rast, A., Sharp, T., Plana, L., Furber, S.: A Hierarchical Configuration System for a Massively Parallel Neural Hardware Platform. In: ACM (ed.) CF 2012 Proceedings of the 9th Conference on Computing Frontiers, Cagliari, pp. 183–192 (2012)

    Google Scholar 

  13. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE T. Pattern. Anal. 20(11) (1998)

    Google Scholar 

  14. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  15. Duncan, J., Humphreys, G.W.: Visual search and stimulus similarity. Psychol. Rev. 96(3), 433–458 (1989)

    Article  Google Scholar 

  16. Plana, L., Furber, S., Temple, S., Khan, M., Shi, Y., Wu, J., Yang, S.: A GALS Infrastructure for a Massively Parallel Multiprocessor. IEEE Design & Test of Computers 24(5), 454–463 (2007)

    Article  Google Scholar 

  17. Brohan, K., Gurney, K., Dudek, P.: Using Reinforcement Learning to Guide the Development of Self-organised Feature Maps for Visual Orienting. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part II. LNCS, vol. 6353, pp. 180–189. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Hubel, D.H.: Eye, Brain, and Vision. Scientific American Library, New York (1988)

    Google Scholar 

  19. Noudoost, B., Chang, M.H., Steinmetz, N.A., Moore, T.: Top-down control of visual attention. Current Opinion in Neurobiology 20(2), 183–190 (2010)

    Article  Google Scholar 

  20. Bisley, J.W., Mirpour, K., Arcizet, F., Ong, W.S.: The role of the lateral intraparietal area in orienting attention and its implications for visual search. Eur. J. Neurosci. 33, 1982–1990 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galluppi, F. et al. (2012). A Real-Time, Event-Driven Neuromorphic System for Goal-Directed Attentional Selection. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34481-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34481-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34480-0

  • Online ISBN: 978-3-642-34481-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics