Abstract
In this paper, we present internal simulations as a methodology for human behaviour recognition and understanding. The internal simulations consist of pairs of inverse forward models representing sensorimotor actions. The main advantage of this method is that it both serves for action selection and prediction as well as recognition. We present several human-robot interaction experiments where the robot can recognize the behaviour of the human reaching for objects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akgün, B., Tunaöglu, D., Sahin, E.: Action recognition through an action generation mechanism. In: International Conference on Epigenetic Robotics (EPIROB) (2010)
Baron-Cohen, S.: Mindblindness: An Essay on Autism and Theory of Mind. MIT Press (2001)
Barsalou, L.W.: Grounded cognition. Annual Reviews Psychology 59, 617–645 (2008)
Blakemore, S.J., Wolpert, D., Frith, C.: Why can’t you tickle yourself? Neuroreport 11, 11–16 (2000)
Blakemore, S.J., Goodbody, S.J., Wolpert, D.M.: Predicting the consequences of our own actions: The role of sensorimotor context estimation. The Journal of Neuroscience 18(18), 7511–7518 (1998)
Dearden, A.: Developmental learning of internal models for robotics. Ph.D. thesis, Imperial College London (2008)
Demiris, Y., Simmons, G.: Perceiving the unusual: Temporal properties of hierarchical motor representations for action perception. Neural Networks pp. 272–284 (2006)
Frith, C.D.: The Cognitive Neuropsychology of Schizophrenia. Erlbaum Associates (1992)
Gallese, V.: Before and below theory of mind: embodied simulation and the neural correlates of social cognition. Phil. Trans. of the Royal Society B 362(1480), 659–669 (2007)
Hafner, V.V., Bachmann, F.: Human-humanoid walking gait recognition. In: Proceedings of Humanoids 2008, 8th IEEE-RAS International Conference on Humanoid Robots, pp. 598–602 (2008)
Haruno, M., Wolpert, D.M., Kawato, M.: Mosaic model for sensorimotor learning and control. Neural Computation 13, 2201–2220 (2001)
Jordan, M.I., Rumelhart, D.E.: Forward models: Supervised learning with a distal teacher. Cognitive Science 16, 307–354 (1992), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.657
Lara, B., Rendon, J.M., Capistran, M.: Prediction of multi-modal sensory situations, a forward model approach. In: Proceedings of the 4th IEEE Latin America Robotics Symposium, vol. 1 (2007)
Möller, R., Schenck, W.: Bootstrapping cognition from behavior–a computerized thought experiment. Cognitive Science 32(3), 504–542 (2008), http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ799248
Prinz, W.: Perception and action planning. European Journal of Cognitive Psychology 9(2), 129–154 (1997)
Schillaci, G., Hafner, V.V.: Random movement strategies in self-exploration for a humanoid robot. In: Proc. of the Intern. Conf. on Human-Robot Interaction 2011, pp. 245–246 (2011)
Schillaci, G., Hafner, V.V.: Prerequisites for intuitive interaction - on the example of humanoid motor babbling. In: HRI 2011 Workshop on Expectations in intuitive human-robot interaction, Laussane, Switzerland (March 2011)
Schillaci, G., Hafner, V.V., Lara, B.: Coupled inverse-forward models for action execution leading to tool-use in a humanoid robot. In: Proceedings of the 7th ACM/IEEE International Conference on Human-Robot Interaction, Boston (2012)
Schillaci, G., Lara, B., Hafner, V.V.: Internal simulation of the sensorimotor loop in action execution and recognition. In: Proceedings of the 5th International Conference on Cognitive Systems (CogSys 2012), Vienna, Austria (2012)
Troje, N.F.: Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. Journal of Vision 2(5), 371–387 (2002)
van der Wel, R., Sebanz, N., Knoblich, G.: Action perception from a common coding perspective. In: Johnson, K., Shiffrar, M. (eds.) People Watching: Social, Perceptual, and Neurophysiological Studies of Body Perception (in press)
Wilson, M., Knoblich, G.: The case for motor for motor involvement in perceiving conspecifics. Psychological Bulletin 131, 460–473 (2005)
Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Netw. 11(7-8), 1317–1329 (1998)
Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358(1431), 593–602 (2003), http://dx.doi.org/10.1098/rstb.2002.1238
Wolpert, D.M., Flanagan, J.R.: Motor prediction. Current Biology 11(18), R729–R732 (2001), http://www.sciencedirect.com/science/article/B6VRT-441NT53-4/2/6f0a5d133bce3780760eeb0841865e58
Wolpert, D.M., Ghahramani, Z.: Computational principles of movement neuroscience. Nature Neuroscience 3(suppl.), 1212–1217 (2000), http://dx.doi.org/10.1038/81497
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schillaci, G., Lara, B., Hafner, V.V. (2012). Internal Simulations for Behaviour Selection and Recognition. In: Salah, A.A., Ruiz-del-Solar, J., Meriçli, Ç., Oudeyer, PY. (eds) Human Behavior Understanding. HBU 2012. Lecture Notes in Computer Science, vol 7559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34014-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-34014-7_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34013-0
Online ISBN: 978-3-642-34014-7
eBook Packages: Computer ScienceComputer Science (R0)