Abstract
Recurrent neural networks (RNNs) in combination with a pooling operator and the neighbourhood components analysis (NCA) objective function are able to detect the characterizing dynamics of sequences and embed them into a fixed-length vector space of arbitrary dimensionality. Subsequently, the resulting features are meaningful and can be used for visualization or nearest neighbour classification in linear time. This kind of metric learning for sequential data enables the use of algorithms tailored towards fixed length vector spaces such as ℝn.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks 5, 157–166 (1994)
Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expression compiler. In: Proceedings of the Python for Scientific Computing Conference (SciPy), Oral (June 2010)
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. Journal of Machine Learning Research (2011) (to appear)
Keogh, E., Xi, X., Wei, L., Ratanamahatana, C.A.: The UCR time series classification/clustering homepage (2006)
Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood components analysis. In: Advances in Neural Information Processing Systems 17, pp. 513–520. MIT Press (2004)
Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks 18, 602–610 (2005)
Graves, A., Schmidhuber, J.: Offline handwriting recognition with multidimensional recurrent neural networks. In: Neural Information Processing Systems, pp. 545–552 (2009)
Hochreiter, S.: Untersuchungen zu dynamischen neuronalen netzen (1991)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9, 1735–1780 (1997)
Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classifiers. In: Advances in Neural Information Processing Systems, vol. 11, pp. 487–493. MIT Press (1998)
Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004)
Li, L., Aditya Prakash, B.: Time series clustering: Complex is simpler (2011)
Martens, J., Sutskever, I.: Learning recurrent neural networks with hessian-free optimization. In: Proceedings of the 28th International Conference on Machine Learning (2011)
Martens, J., Sutskever, I., Hinton, G.: Generating text with recurrent neural networks. In: Proceedings of the 28th International Conference on Machine Learning (2011)
Mozer, M.C.: A focused backpropagation algorithm for temporal pattern recognition (1989)
Salakhutdinov, R., Hinton, G.: Learning a nonlinear embedding by preserving class neighbourhood structure (2007)
van der Maaten, L.: Learning discriminative fisher kernels. In: Proceedings of the 28th International Conference on Machine Learning (2011)
Williams, R.J., Zipser, D.: Gradient-based learning algorithms for recurrent networks and their computational complexity (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bayer, J., Osendorfer, C., van der Smagt, P. (2012). Learning Sequence Neighbourhood Metrics. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_67
Download citation
DOI: https://doi.org/10.1007/978-3-642-33269-2_67
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33268-5
Online ISBN: 978-3-642-33269-2
eBook Packages: Computer ScienceComputer Science (R0)