iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-33269-2_67
Learning Sequence Neighbourhood Metrics | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7552))

Included in the following conference series:

Abstract

Recurrent neural networks (RNNs) in combination with a pooling operator and the neighbourhood components analysis (NCA) objective function are able to detect the characterizing dynamics of sequences and embed them into a fixed-length vector space of arbitrary dimensionality. Subsequently, the resulting features are meaningful and can be used for visualization or nearest neighbour classification in linear time. This kind of metric learning for sequential data enables the use of algorithms tailored towards fixed length vector spaces such as ℝn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks 5, 157–166 (1994)

    Article  Google Scholar 

  2. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expression compiler. In: Proceedings of the Python for Scientific Computing Conference (SciPy), Oral (June 2010)

    Google Scholar 

  3. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. Journal of Machine Learning Research (2011) (to appear)

    Google Scholar 

  4. Keogh, E., Xi, X., Wei, L., Ratanamahatana, C.A.: The UCR time series classification/clustering homepage (2006)

    Google Scholar 

  5. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood components analysis. In: Advances in Neural Information Processing Systems 17, pp. 513–520. MIT Press (2004)

    Google Scholar 

  6. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks 18, 602–610 (2005)

    Article  Google Scholar 

  7. Graves, A., Schmidhuber, J.: Offline handwriting recognition with multidimensional recurrent neural networks. In: Neural Information Processing Systems, pp. 545–552 (2009)

    Google Scholar 

  8. Hochreiter, S.: Untersuchungen zu dynamischen neuronalen netzen (1991)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9, 1735–1780 (1997)

    Article  Google Scholar 

  10. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classifiers. In: Advances in Neural Information Processing Systems, vol. 11, pp. 487–493. MIT Press (1998)

    Google Scholar 

  11. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004)

    Article  Google Scholar 

  12. Li, L., Aditya Prakash, B.: Time series clustering: Complex is simpler (2011)

    Google Scholar 

  13. Martens, J., Sutskever, I.: Learning recurrent neural networks with hessian-free optimization. In: Proceedings of the 28th International Conference on Machine Learning (2011)

    Google Scholar 

  14. Martens, J., Sutskever, I., Hinton, G.: Generating text with recurrent neural networks. In: Proceedings of the 28th International Conference on Machine Learning (2011)

    Google Scholar 

  15. Mozer, M.C.: A focused backpropagation algorithm for temporal pattern recognition (1989)

    Google Scholar 

  16. Salakhutdinov, R., Hinton, G.: Learning a nonlinear embedding by preserving class neighbourhood structure (2007)

    Google Scholar 

  17. van der Maaten, L.: Learning discriminative fisher kernels. In: Proceedings of the 28th International Conference on Machine Learning (2011)

    Google Scholar 

  18. Williams, R.J., Zipser, D.: Gradient-based learning algorithms for recurrent networks and their computational complexity (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bayer, J., Osendorfer, C., van der Smagt, P. (2012). Learning Sequence Neighbourhood Metrics. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33269-2_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33268-5

  • Online ISBN: 978-3-642-33269-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics