iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-33269-2_34
Classification of Distorted Patterns by Feed-Forward Spiking Neural Networks | SpringerLink
Skip to main content

Classification of Distorted Patterns by Feed-Forward Spiking Neural Networks

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7552))

Included in the following conference series:

Abstract

In this paper, a feed forward spiking neural network is tested with spike train patterns with additional and missing spikes. The network is trained with noisy and distorted patterns with an extension of the ReSuMe learning rule to networks with hidden layers. The results show that the multilayer ReSuMe can reliably learn to discriminate highly distorted patterns spanning over 500 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bohte, S., Kok, J., Poutré, H.L.: Error backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48, 17–37 (2002)

    Article  MATH  Google Scholar 

  2. de Charms, R.C., Merzenich, M.M.: Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381, 610–613 (1996)

    Article  Google Scholar 

  3. Gerstner, W.: A Framework for Spiking Neuron Models: The Spike Response Model. In: Moss, F., Gielen, S. (eds.) The Handbook of Biological Physics, vol. 4, pp. 469–516. Elsevier Science (2001)

    Google Scholar 

  4. Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge University Press (2002)

    Google Scholar 

  5. Grüning, A., Sporea, I.: Supervised Learning of Logical Operations in Layered Spiking Neural Networks with Spike Train Encoding. Neural Processing Letters (2012), doi: 10.1007/s11063-012-9225-1

    Google Scholar 

  6. Gütig, R., Aharonov, R., Rotter, S., Sompolinsky, H.: Learning Input Correlations through Nonlinear Temporally Asymmetric Hebbian Plasticity. J. of Neuroscience 23(9), 3697–3714 (2003)

    Google Scholar 

  7. Gütig, R., Sompolinsky, H.: The tempotron: a neuron that learns spike timing-based decisions. Nature Neuroscience 9(3), 420–428 (2006)

    Article  Google Scholar 

  8. Heeger, D.: Poisson Model of Spike Generation (2001), http://www.cns.nyu.edu/~david/handouts/poisson.pdf

  9. Kempter, R., Gerstner, W., Van Hemmen, J.L.: Intrinsic Stabilization of Output Rates by Spike-Based Hebbian Learning. Neural Comp. 13, 2709–2741 (2001)

    Article  MATH  Google Scholar 

  10. Neuenschwander, S., Singer, W.: Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature 379, 728–733 (1996)

    Article  Google Scholar 

  11. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Trans. of the Soc. for Comp. Simulation International 14(4), 1659–1671 (1997)

    MathSciNet  Google Scholar 

  12. Sporea, I., Grüning, A.: Supervised Learning in Multilayer Spiking Neural Networks. Under revision, Pre-print (2012), http://arxiv.org/pdf/1202.2249v1

  13. Ponulak, F., Kasiński, A.: Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting. Neural Comp. 22(2), 467–510 (2010)

    Article  MATH  Google Scholar 

  14. van Rossum, M.C.: A novel spike distance. Neural Comp. 13(4), 751–763 (2001)

    Article  MATH  Google Scholar 

  15. Watt, A.J., Desai, N.S.: Homeostatic plasticity and STDP: keeping a neuron’s cool in a fluctuating world. Front. In: Synaptic Neuroscience 2(5) (2010)

    Google Scholar 

  16. Wehr, M., Laurent, G.: Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384, 162–166 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sporea, I., Grüning, A. (2012). Classification of Distorted Patterns by Feed-Forward Spiking Neural Networks. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33269-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33268-5

  • Online ISBN: 978-3-642-33269-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics