iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-33269-2_29
The Capacity and the Versatility of the Pulse Coupled Neural Network in the Image Matching | SpringerLink
Skip to main content

The Capacity and the Versatility of the Pulse Coupled Neural Network in the Image Matching

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7552))

Included in the following conference series:

  • 4158 Accesses

Abstract

The image matching is an important technique in the image processing and the method using Pulse Coupled Neural Network (PCNN) had been proposed. One of the useful feature of the method is that the method is valid for the image matching among rotated, magnified and shrunk images. We have been proposed the parameter learning method of the PCNN for the image matching. Considering that the image matching technique will utilize for any advanced image processing such as a content based image retrieval, the capacity and the versatility of the method are important characteristics to evaluate the method. In this study, our method is tested using total 17,920 images and we describe the characteristics of the capacity and the versatility of image matching method using PCNN with our parameter learning algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Echorn, R., Reitboeck, H.J., Arndt, M., Dicke, P.: Feature linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex. Neural Computation 2, 293–307 (1990)

    Article  Google Scholar 

  2. Kruse, W., Eckhorn, R.: Inhibition of sustained gamma oscillations (35-80 Hz) by fast transient responses in cat visual cortex. Proc. Natl. Acad. Sci. USA 93, 6112–6117 (1996)

    Article  Google Scholar 

  3. Echorn, R.: Neural Mechanisms of Scene Segmentation: Recording from the Visual Cortex Suggest Basic Circuits for Liking Field Model. IEEE Trans. Neural Network 10(3), 464–479 (1999)

    Article  Google Scholar 

  4. Johnson, J.L., Padgett, M.L.: PCNN Models and Applications. IEEE Trans. Neural Network 10(3), 480–498 (1999)

    Article  Google Scholar 

  5. Kurokawa, H., Kaneko, S., Yonekawa, M.: A Color Image Segmentation Using Inhibitory Connected Pulse Coupled Neural Network. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008, Part II. LNCS, vol. 5507, pp. 776–783. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Kurokawa, H., Yoshihara, M., Yonekawa, M.: An Effect of Inhibitory Connections on Synchronous Firing Assembly in the Inhibitory Connected Pulse Coupled Neural Network. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010, Part I. LNCS, vol. 6443, pp. 179–187. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Lindblad, T., Kinser, J.M.: Image processing using Pulse-Coupled Neural Networks, 2nd edn. Springer (2005)

    Google Scholar 

  8. Gu, X.-D., Wang, Y.-y., Zhang, L.-M.: Object Detection Using Unit-Linking PCNN Image Icons. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006, Part II. LNCS, vol. 3972, pp. 616–622. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Mahgoub, A.G., Ebeid, A.A., Abdel-Baky, H.M., El-Badawy, E.A.: An Intersecting Cortical Model Based Framework for Human Face Recognition. Journal of Systemics, Cybernetics and Informatics 6(2), 88–93 (2008)

    Google Scholar 

  10. Yonekawa, M., Kurokawa, H.: An Automatic Parameter Adjustment Method of Pulse Coupled Neural Network for Image Segmentation. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part I. LNCS, vol. 5768, pp. 834–843. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Vega-Pineda, J., Chacon-Murguia, M.I., Camarillo-Cisneros, R.: Synthesis of Pulse-Coupled Neural Networks in FPGAs for Real-Time Image Segmentation. In: Proc. of IJCNN, pp. 8167–8171 (2006)

    Google Scholar 

  12. Yonekawa, M., Kurokawa, H.: The Parameter Optimization of the Pulse Coupled Neural Network for the Pattern Recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part III. LNCS, vol. 6354, pp. 110–113. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Yonekawa, M., Kurokawa, H.: An Evaluation of the Image Recognition Method Using Pulse Coupled Neural Network. In: Honkela, T. (ed.) ICANN 2011, Part I. LNCS, vol. 6791, pp. 217–224. Springer, Heidelberg (2011)

    Google Scholar 

  14. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image Retrieval: Ideas, Influences, and Trends of the New Age. ACM Computing Surveys 40(2), Article 5 (2008)

    Google Scholar 

  15. Rui, Y., Huang, T.S.: Image retrieval: Current techniques, promising directions, and open issues. Journal of Visual Communication and Image Representation 10, 39–62 (1999)

    Article  Google Scholar 

  16. Veltkamp, R.C., Tanase, M.: Content-Based Image Retrieval Systems: A Survey. TR UU-CS-2000-34, pp. 1–62 (2002)

    Google Scholar 

  17. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In: Proc. of Computer Vision and Pattern Recognition Workshop, pp. 178–178 (2004)

    Google Scholar 

  18. Laaksonen, J., Koskela, M., Laakso, S., Oja, E.: PicSOM - content-based image retrieval with self-organizing maps. Pattern Recognition Letters 21(13-14), 1199–1207 (2000)

    Article  MATH  Google Scholar 

  19. Yonekawa, M., Kurokawa, H.: The Content-Based Image Retrieval using the Pulse Coupled Neural Network. In: Proc. of WCCI (to be published, 2012)

    Google Scholar 

  20. Wright, A.H.: Genetic Algorithms for Real Parameter Optimization. In: Foundations of Genetic Algorithms, pp. 205–218 (1999)

    Google Scholar 

  21. CALTECH256, http://www.vision.caltech.edu/Image_Datasets/Caltech256/images/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishida, Y., Yonekawa, M., Kurokawa, H. (2012). The Capacity and the Versatility of the Pulse Coupled Neural Network in the Image Matching. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33269-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33268-5

  • Online ISBN: 978-3-642-33269-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics