iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-33269-2_16
Silicon Neurons That Compute | SpringerLink
Skip to main content

Abstract

We use neuromorphic chips to perform arbitrary mathematical computations for the first time. Static and dynamic computations are realized with heterogeneous spiking silicon neurons by programming their weighted connections. Using 4K neurons with 16M feed-forward or recurrent synaptic connections, formed by 256K local arbors, we communicate a scalar stimulus, quadratically transform its value, and compute its time integral. Our approach provides a promising alternative for extremely power-constrained embedded controllers, such as fully implantable neuroprosthetic decoders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sarpeshkar, R., Delbruck, T., Mead, C.A.: White noise in MOS transistors and resistors. IEEE Circuits and Devices Magazine 9(6), 23–29 (1993)

    Article  Google Scholar 

  2. Eliasmith, C., Anderson, C.H.: Neural engineering: computation, representation, and dynamics in neurobiological systems. MIT Press, Cambridge (2003)

    Google Scholar 

  3. Boahen, K.: A Burst-Mode Word-Serial Address-Event Link-I: Transmitter Design. IEEE Transactions on Circuits and Systems I 51(7), 1269–1280 (2004)

    Article  Google Scholar 

  4. Silver, R., Boahen, K., Grillner, S., Kopell, N., Olsen, K.L.: Neurotech for neuroscience: unifying concepts, organizing principles, and emerging tools. Journal of Neuroscience 27(44), 11807–11819 (2007)

    Article  Google Scholar 

  5. Gao, P., Benjamin, B.V., Boahen, K.: Dynamical system guided mapping of quantitative neuronal models onto neuromorphic hardware. IEEE Transactions on Circuits and Systems (in press, 2012)

    Google Scholar 

  6. Benjamin, B.V., Arthur, J.V., Gao, P., Merolla, P., Boahen, K.: A Superposable Silicon Synapse with Programmable Reversal Potential. In: International Conference of the IEEE Engineering and Medicine in Biology Society (in press, 2012)

    Google Scholar 

  7. Arthur, J.V., Boahen, K.A.: Synchrony in Silicon: The Gamma Rhythm. IEEE Transactions on Neural Networks 18(6), 1815–1825 (2007)

    Article  Google Scholar 

  8. Goldberg, D.H., Cauwenberghs, G., Andreou, A.G.: Probabilistic synaptic weighting in a reconfigurable network of VLSI integrate-and-fire neurons. Neural Netw. 14(6-7), 781–793 (2001)

    Article  Google Scholar 

  9. Andreou, A.G., Boahen, K.: Translinear circuits in subthreshold MOS. J. Anal. Integr. Circuits Signal Process 9, 141–166 (1996)

    Article  Google Scholar 

  10. Dethier, J., Nuyujukian, P., Eliasmith, C., Stewart, T., Elassaad, S.A., Shenoy, K.V., Boahen, K.: A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm. In: Advances in Neural Information Processing Systems, vol. 24 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choudhary, S. et al. (2012). Silicon Neurons That Compute. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33269-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33268-5

  • Online ISBN: 978-3-642-33269-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics