Abstract
The class of languages captured by Constrained Automata (CA) that are unambiguous is shown to possess more closure properties than the provably weaker class captured by deterministic CA. Problems decidable for deterministic CA are nonetheless shown to remain decidable for unambiguous CA, and testing for regularity is added to this set of decidable problems. Unambiguous CA are then shown incomparable with deterministic reversal-bounded machines in terms of expressivity, and a deterministic model equivalent to unambiguous CA is identified.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Behle, C., Krebs, A., Reifferscheid, S.: Typed Monoids – An Eilenberg-Like Theorem for Non Regular Languages. In: Winkler, F. (ed.) CAI 2011. LNCS, vol. 6742, pp. 97–114. Springer, Heidelberg (2011)
Cadilhac, M., Finkel, A., McKenzie, P.: Bounded Parikh automata. In: WORDS, pp. 93–102 (2011)
Cadilhac, M., Finkel, A., McKenzie, P.: On the expressiveness of Parikh automata and related models. In: NCMA, pp. 103–119 (2011)
Colcombet, T.: Forms of determinism for automata. In: STACS, pp. 1–23 (2012)
Ginsburg, S., Spanier, E.: Semigroups, Presburger formulas and languages. Pacific Journal of Mathematics 16(2), 285–296 (1966)
Ginsburg, S., Spanier, E.: Bounded ALGOL-like languages (1964)
Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proceedings of the American Mathematical Society 17(5), 1043–1049 (1966)
Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)
Klaedtke, F., Rueß, H.: Monadic Second-Order Logics with Cardinalities. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 681–696. Springer, Heidelberg (2003)
Mitrana, V., Stiebe, R.: Extended finite automata over groups. Discrete Appl. Math. 108(3), 287–300 (2001)
Parikh, R.J.: On context-free languages. Journal of the ACM 13(4), 570–581 (1966)
Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cadilhac, M., Finkel, A., McKenzie, P. (2012). Unambiguous Constrained Automata. In: Yen, HC., Ibarra, O.H. (eds) Developments in Language Theory. DLT 2012. Lecture Notes in Computer Science, vol 7410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31653-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-31653-1_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31652-4
Online ISBN: 978-3-642-31653-1
eBook Packages: Computer ScienceComputer Science (R0)