iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-31653-1_22
Unambiguous Constrained Automata | SpringerLink
Skip to main content

Unambiguous Constrained Automata

  • Conference paper
Developments in Language Theory (DLT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7410))

Included in the following conference series:

Abstract

The class of languages captured by Constrained Automata (CA) that are unambiguous is shown to possess more closure properties than the provably weaker class captured by deterministic CA. Problems decidable for deterministic CA are nonetheless shown to remain decidable for unambiguous CA, and testing for regularity is added to this set of decidable problems. Unambiguous CA are then shown incomparable with deterministic reversal-bounded machines in terms of expressivity, and a deterministic model equivalent to unambiguous CA is identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Behle, C., Krebs, A., Reifferscheid, S.: Typed Monoids – An Eilenberg-Like Theorem for Non Regular Languages. In: Winkler, F. (ed.) CAI 2011. LNCS, vol. 6742, pp. 97–114. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Cadilhac, M., Finkel, A., McKenzie, P.: Bounded Parikh automata. In: WORDS, pp. 93–102 (2011)

    Google Scholar 

  3. Cadilhac, M., Finkel, A., McKenzie, P.: On the expressiveness of Parikh automata and related models. In: NCMA, pp. 103–119 (2011)

    Google Scholar 

  4. Colcombet, T.: Forms of determinism for automata. In: STACS, pp. 1–23 (2012)

    Google Scholar 

  5. Ginsburg, S., Spanier, E.: Semigroups, Presburger formulas and languages. Pacific Journal of Mathematics 16(2), 285–296 (1966)

    MathSciNet  MATH  Google Scholar 

  6. Ginsburg, S., Spanier, E.: Bounded ALGOL-like languages (1964)

    Google Scholar 

  7. Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proceedings of the American Mathematical Society 17(5), 1043–1049 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Klaedtke, F., Rueß, H.: Monadic Second-Order Logics with Cardinalities. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 681–696. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Mitrana, V., Stiebe, R.: Extended finite automata over groups. Discrete Appl. Math. 108(3), 287–300 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Parikh, R.J.: On context-free languages. Journal of the ACM 13(4), 570–581 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cadilhac, M., Finkel, A., McKenzie, P. (2012). Unambiguous Constrained Automata. In: Yen, HC., Ibarra, O.H. (eds) Developments in Language Theory. DLT 2012. Lecture Notes in Computer Science, vol 7410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31653-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31653-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31652-4

  • Online ISBN: 978-3-642-31653-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics