Abstract
We consider the performance of a number of DPLL algorithms on random 3-CNF formulas with n variables and m = rn clauses. A long series of papers analyzing so-called “myopic” DPLL algorithms has provided a sequence of lower bounds for their satisfiability threshold. Indeed, for each myopic algorithm \({\mathcal A}\) it is known that there exists an algorithm-specific clause-density, \(r_{\mathcal A}\), such that if \(r < r_{\mathcal A}\), the algorithm finds a satisfying assignment in linear time. For example, \(r_{\mathcal A}\) equals 8/3 = 2.66.. for orderred-dll and 3.003... for generalized unit clause. We prove that for densities well within the provably satisfiable regime, every backtracking extension of either of these algorithms takes exponential time. Specifically, all extensions of orderred-dll take exponential time for r > 2.78 and the same is true for generalized unit clause for all r > 3.1. Our results imply exponential lower bounds for many other myopic algorithms for densities similarly close to the corresponding \(r_{\mathcal A}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Achlioptas, D.: Lower bounds for random 3-sat via differential equations. Theoretical Computer Science 265(1-2), 159–185 (2001)
Achlioptas, D., Beame, P., Molloy, M.: A sharp threshold in proof complexity yields lower bounds for satisfiability search. Journal of Computer and System Sciences 68(2), 238–268 (2004)
Achlioptas, D., Coja-Oghlan, A.: Algorithmic barriers from phase transitions. In: IEEE 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp. 793–802. IEEE (2008)
Achlioptas, D., Kirousis, L.M., Kranakis, E., Krizanc, D.: Rigorous results for random (2+ p)-SAT. Theoretical Computer Science 265(1), 109–129 (2001)
Achlioptas, D., Menchaca-Mendez, R.: Unsatisfiability bounds for random csps from an energetic interpolation method (2012) (to appear in ICALP 2012)
Bayati, M., Gamarnik, D., Tetali, P.: Combinatorial approach to the interpolation method and scaling limits in sparse random graphs. In: STOC 2010, pp. 105–114 (2010)
Beame, P., Pitassi, T.: Propositional proof complexity: Past, present and future. Current Trends in Theoretical Computer Science, 42–70 (2001)
Broder, A.Z., Frieze, A.M., Upfal, E.: On the satisfiability and maximum satisfiability of random 3-cnf formulas. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1993, pp. 322–330. Society for Industrial and Applied Mathematics, Philadelphia (1993), http://dl.acm.org/citation.cfm?id=313559.313794
Chvátal, V., Reed, B.: Mick gets some (the odds are on his side) [satisfiability]. In: Proceedings 33rd Annual Symposium on Foundations of Computer Science, pp. 620–627. IEEE (1992)
Chvatal, V., Szemeredi, E.: Many hard examples for resolution. Journal of the Association for Computing Machinery 35(4), 759–768 (1988)
Coja-Oghlan, A.: On belief propagation guided decimation for random k-sat. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 957–966. SIAM (2011)
Cook, S., Mitchell, D.: Finding hard instances of the satisfiability problem. In: Satisfiability Problem: Theory and Applications: DIMACS Workshop, March 11-13, vol. 35, p. 1. Amer. Mathematical Society (1997)
Díaz, J., Kirousis, L., Mitsche, D., Pérez-Giménez, X.: On the satisfiability threshold of formulas with three literals per clause. Theoretical Computer Science 410(30-32), 2920–2934 (2009)
Franz, S., Leone, M.: Replica bounds for optimization problems and diluted spin systems. Journal of Statistical Physics 111(3), 535–564 (2003)
Friedgut, E.: Sharp thresholds of graph properties, and the k-sat problem. J. Amer. Math. Soc. 12, 1017–1054 (1998)
Frieze, A., Suen, S.: Analysis of Two Simple Heuristics on a Random Instance ofk-sat. Journal of Algorithms 20(2), 312–355 (1996)
Goerdt, A.: A threshold for unsatisfiability. Journal of Computer and System Sciences 53(3), 469–486 (1996)
Guerra, F., Toninelli, F.L.: The thermodynamic limit in mean field spin glass models. Communications in Mathematical Physics 230(1), 71–79 (2002)
Kaporis, A.C., Kirousis, L.M., Lalas, E.G.: The probabilistic analysis of a greedy satisfiability algorithm. Random Structures & Algorithms 28(4), 444–480 (2006)
Mézard, M., Mora, T., Zecchina, R.: Clustering of solutions in the random satisfiability problem. Physical Review Letters 94(19), 197205 (2005)
Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random satisfiability problems. Science 297(5582), 812–815 (2002)
Ming-Te, C., Franco, J.: Probabilistic analysis of a generalization of the unit-clause literal selection heuristics for the <i> k</i> satisfiability problem. Information Sciences 51(3), 289–314 (1990)
Monasson, R., Zecchina, R.: Statistical mechanics of the random k-satisfiability model. Phys. Rev. E 56, 1357–1370 (1997), http://link.aps.org/doi/10.1103/PhysRevE.56.1357
Panchenko, D., Talagrand, M.: Bounds for diluted mean-fields spin glass models. Probability Theory and Related Fields 130(3), 319–336 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Achlioptas, D., Menchaca-Mendez, R. (2012). Exponential Lower Bounds for DPLL Algorithms on Satisfiable Random 3-CNF Formulas. In: Cimatti, A., Sebastiani, R. (eds) Theory and Applications of Satisfiability Testing – SAT 2012. SAT 2012. Lecture Notes in Computer Science, vol 7317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31612-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-31612-8_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31611-1
Online ISBN: 978-3-642-31612-8
eBook Packages: Computer ScienceComputer Science (R0)