iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-31612-8_25
Exponential Lower Bounds for DPLL Algorithms on Satisfiable Random 3-CNF Formulas | SpringerLink
Skip to main content

Exponential Lower Bounds for DPLL Algorithms on Satisfiable Random 3-CNF Formulas

  • Conference paper
Theory and Applications of Satisfiability Testing – SAT 2012 (SAT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7317))

Abstract

We consider the performance of a number of DPLL algorithms on random 3-CNF formulas with n variables and m = rn clauses. A long series of papers analyzing so-called “myopic” DPLL algorithms has provided a sequence of lower bounds for their satisfiability threshold. Indeed, for each myopic algorithm \({\mathcal A}\) it is known that there exists an algorithm-specific clause-density, \(r_{\mathcal A}\), such that if \(r < r_{\mathcal A}\), the algorithm finds a satisfying assignment in linear time. For example, \(r_{\mathcal A}\) equals 8/3 = 2.66.. for orderred-dll and 3.003... for generalized unit clause. We prove that for densities well within the provably satisfiable regime, every backtracking extension of either of these algorithms takes exponential time. Specifically, all extensions of orderred-dll take exponential time for r > 2.78 and the same is true for generalized unit clause for all r > 3.1. Our results imply exponential lower bounds for many other myopic algorithms for densities similarly close to the corresponding \(r_{\mathcal A}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achlioptas, D.: Lower bounds for random 3-sat via differential equations. Theoretical Computer Science 265(1-2), 159–185 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Achlioptas, D., Beame, P., Molloy, M.: A sharp threshold in proof complexity yields lower bounds for satisfiability search. Journal of Computer and System Sciences 68(2), 238–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Achlioptas, D., Coja-Oghlan, A.: Algorithmic barriers from phase transitions. In: IEEE 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp. 793–802. IEEE (2008)

    Google Scholar 

  4. Achlioptas, D., Kirousis, L.M., Kranakis, E., Krizanc, D.: Rigorous results for random (2+ p)-SAT. Theoretical Computer Science 265(1), 109–129 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Achlioptas, D., Menchaca-Mendez, R.: Unsatisfiability bounds for random csps from an energetic interpolation method (2012) (to appear in ICALP 2012)

    Google Scholar 

  6. Bayati, M., Gamarnik, D., Tetali, P.: Combinatorial approach to the interpolation method and scaling limits in sparse random graphs. In: STOC 2010, pp. 105–114 (2010)

    Google Scholar 

  7. Beame, P., Pitassi, T.: Propositional proof complexity: Past, present and future. Current Trends in Theoretical Computer Science, 42–70 (2001)

    Google Scholar 

  8. Broder, A.Z., Frieze, A.M., Upfal, E.: On the satisfiability and maximum satisfiability of random 3-cnf formulas. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1993, pp. 322–330. Society for Industrial and Applied Mathematics, Philadelphia (1993), http://dl.acm.org/citation.cfm?id=313559.313794

    Google Scholar 

  9. Chvátal, V., Reed, B.: Mick gets some (the odds are on his side) [satisfiability]. In: Proceedings 33rd Annual Symposium on Foundations of Computer Science, pp. 620–627. IEEE (1992)

    Google Scholar 

  10. Chvatal, V., Szemeredi, E.: Many hard examples for resolution. Journal of the Association for Computing Machinery 35(4), 759–768 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coja-Oghlan, A.: On belief propagation guided decimation for random k-sat. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 957–966. SIAM (2011)

    Google Scholar 

  12. Cook, S., Mitchell, D.: Finding hard instances of the satisfiability problem. In: Satisfiability Problem: Theory and Applications: DIMACS Workshop, March 11-13, vol. 35, p. 1. Amer. Mathematical Society (1997)

    Google Scholar 

  13. Díaz, J., Kirousis, L., Mitsche, D., Pérez-Giménez, X.: On the satisfiability threshold of formulas with three literals per clause. Theoretical Computer Science 410(30-32), 2920–2934 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Franz, S., Leone, M.: Replica bounds for optimization problems and diluted spin systems. Journal of Statistical Physics 111(3), 535–564 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Friedgut, E.: Sharp thresholds of graph properties, and the k-sat problem. J. Amer. Math. Soc. 12, 1017–1054 (1998)

    Article  MathSciNet  Google Scholar 

  16. Frieze, A., Suen, S.: Analysis of Two Simple Heuristics on a Random Instance ofk-sat. Journal of Algorithms 20(2), 312–355 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goerdt, A.: A threshold for unsatisfiability. Journal of Computer and System Sciences 53(3), 469–486 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guerra, F., Toninelli, F.L.: The thermodynamic limit in mean field spin glass models. Communications in Mathematical Physics 230(1), 71–79 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaporis, A.C., Kirousis, L.M., Lalas, E.G.: The probabilistic analysis of a greedy satisfiability algorithm. Random Structures & Algorithms 28(4), 444–480 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mézard, M., Mora, T., Zecchina, R.: Clustering of solutions in the random satisfiability problem. Physical Review Letters 94(19), 197205 (2005)

    Article  Google Scholar 

  21. Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random satisfiability problems. Science 297(5582), 812–815 (2002)

    Article  Google Scholar 

  22. Ming-Te, C., Franco, J.: Probabilistic analysis of a generalization of the unit-clause literal selection heuristics for the <i> k</i> satisfiability problem. Information Sciences 51(3), 289–314 (1990)

    Article  MathSciNet  Google Scholar 

  23. Monasson, R., Zecchina, R.: Statistical mechanics of the random k-satisfiability model. Phys. Rev. E 56, 1357–1370 (1997), http://link.aps.org/doi/10.1103/PhysRevE.56.1357

    Article  MathSciNet  Google Scholar 

  24. Panchenko, D., Talagrand, M.: Bounds for diluted mean-fields spin glass models. Probability Theory and Related Fields 130(3), 319–336 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Achlioptas, D., Menchaca-Mendez, R. (2012). Exponential Lower Bounds for DPLL Algorithms on Satisfiable Random 3-CNF Formulas. In: Cimatti, A., Sebastiani, R. (eds) Theory and Applications of Satisfiability Testing – SAT 2012. SAT 2012. Lecture Notes in Computer Science, vol 7317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31612-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31612-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31611-1

  • Online ISBN: 978-3-642-31612-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics