Abstract
We provide a systematic and modular method to define non-deterministic finite-valued semantics for a natural and very general family of canonical labelled calculi, of which many previously studied sequent and labelled calculi are particular instances. This semantics is effective, in the sense that it naturally leads to a decision procedure for these calculi. It is then applied to provide simple decidable semantic criteria for crucial syntactic properties of these calculi, namely (strong) analyticity and cut-admissibility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A.A.: Multi-valued Semantics: Why and How. Studia Logica 92, 163–182 (2009)
Avron, A., Lev, I.: Non-deterministic Multiple-valued Structures. Journal of Logic and Computation 15 (2005)
Avron, A., Zamansky, A.: Non-deterministic Semantics for Logical Systems. Handbook of Philosophical Logic 16, 227–304 (2011)
Avron, A., Zamansky, A.: Canonical Signed Calculi, Non-deterministic Matrices and Cut-Elimination. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 31–45. Springer, Heidelberg (2008)
Avron, A., Konikowska, B., Zamansky, A.: Modular Construction of Cut-Free Sequent Calculi for Paraconsistent Logics. To Appear in Proceedings of Logic in Computer Science (LICS 2012) (2012)
Baaz, M., Fermüller, C.G., Salzer, G., Zach, R.: Labelled Calculi and Finite-valued Logics. Studia Logica 61, 7–33 (1998)
Ciabattoni, A., Terui, K.: Towards a semantic characterization of cut elimination. Studia Logica 82(1), 95–119 (2006)
Gabbay, D.M.: Labelled Deductive Systems, Volume 1. Oxford Logic Guides, vol. 33. Clarendon Press/Oxford Science Publications, Oxford (1996)
Lahav, O.: Non-deterministic Matrices for Semi-canonical Deduction Systems. To Appear in Proceedings of IEEE 42nd International Symposium on Multiple-Valued Logic (ISMVL 2012) (2012)
Sano, K.: Sound and Complete Tree-Sequent Calculus for Inquisitive Logic. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds.) WoLLIC 2009. LNCS, vol. 5514, pp. 365–378. Springer, Heidelberg (2009)
Stachniak, Z.: Resolution Proof Systems: An Algebraic Theory. Kluwer Academic Publishers (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baaz, M., Lahav, O., Zamansky, A. (2012). Effective Finite-Valued Semantics for Labelled Calculi. In: Gramlich, B., Miller, D., Sattler, U. (eds) Automated Reasoning. IJCAR 2012. Lecture Notes in Computer Science(), vol 7364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31365-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-31365-3_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31364-6
Online ISBN: 978-3-642-31365-3
eBook Packages: Computer ScienceComputer Science (R0)