iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-31137-6_39
Using Spatial Autocorrelation Techniques and Multi-temporal Satellite Data for Analyzing Urban Sprawl | SpringerLink
Skip to main content

Using Spatial Autocorrelation Techniques and Multi-temporal Satellite Data for Analyzing Urban Sprawl

  • Conference paper
Computational Science and Its Applications – ICCSA 2012 (ICCSA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7335))

Included in the following conference series:

Abstract

Satellite time series offer great potential for a quantitative assessment of urban expansion, urban sprawl and for monitoring of land use changes and soil consumption. This study deals with the spatial characterization of expansion of urban areas by using spatial autocorrelation techniques applied to multi-date Thematic Mapper (TM) satellite images. The investigation focused on several very small towns close to Bari. Urban areas were extracted from NASA Landsat images acquired in 1976, 1999 and 2009, respectively. To cope with the fact that small changes have to be captured and extracted from TM multi-temporal data sets, we adopted the use of spectral indices to emphasize occurring changes, and spatial autocorrelation techniques to reveal spatial patterns. Urban areas were analyzed using both global and local autocorrelation indexes. This approach enables the characterization of pattern features of urban area expansion and it improves land use change estimation. The obtained results showed a significant urban expansion coupled with an increase of irregularity degree of border modifications from 1976 to 2009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anselin, L.: Local indicators of spatial association – LISA. Geographical Analysis 27, 93–115 (1995)

    Article  Google Scholar 

  2. Benguigui, B., Chamanski, D., Marinov, M.: When and where is a city fractal? Environ. Planning B 27, 507–519 (2000)

    Article  Google Scholar 

  3. Boots, B.N., Getis, A.: Point Pattern Analysis. Sage Publications, Newbury Park (1988)

    Google Scholar 

  4. Cheng, J., Masser, I.: Modelling urban growth patterns: a multiscale perspective (2002)

    Google Scholar 

  5. Danese, M., Lazzari, M., Murgante, B.: Kernel Density Estimation Methods for a Geostatistical Approach in Seismic Risk Analysis: The Case Study of Potenza Hilltop Town (Southern Italy). In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 415–429. Springer, Heidelberg (2008), doi:10.1007/978-3-540-69839-5_31.

    Chapter  Google Scholar 

  6. Frankhauser, P.: The Fractal Approach, a new tool for the spatial analysis of urban agglomerations, Population: An English Selection. New Methodological Approaches in the Social Sciences 10(1), 205–240 (1998)

    Google Scholar 

  7. Geary, R.: The contiguity ratio and statistical mapping. The Incorporated Statistician (5) (1954)

    Google Scholar 

  8. Getis, A., Ord, J.: The analysis of spatial association by distance statistics. Geographical Analysis 24, 189–206 (1992)

    Article  Google Scholar 

  9. Green, K., Kempka, D., Lackey, L.: Using remote sensing to detect and monitor land cove and land use. Photogrammetric Engineering and Remote Sensing 60, 331–337 (1994)

    Google Scholar 

  10. Howarth, J.P., Wickware, G.M.: Procedure for change detection using Landsat digital data. International Journal of Remote Sensing 2, 277–291 (1981)

    Article  Google Scholar 

  11. Lacy, R.: South Carolina finds economical way to update digital road data. GIS World 5(10), 58–60 (1992)

    Google Scholar 

  12. Lambin, E.F.: Change detection at multiple scales seasonal and annual variations in landscape variables. Photogrammetric Engineering and Remote Sensing 62, 931–938 (1996)

    Google Scholar 

  13. Lanorte, A., Danese, M., Lasaponara, R., Murgante, B.: Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. International Journal of Applied Earth Observation and Geoinformation (2012), doi:10.1016/j.jag.2011.09.005

    Google Scholar 

  14. Lichtenegger, J.: ERS-I: land use mapping and crop monitoring: a first close look to SAR data. Earth Observation Quarterly, 37–38 (May-June 1992)

    Google Scholar 

  15. Light, D.: The national aerial photography program as a geographic information system resource. Photogrammetric Engineering and Remote Sensing 59, 61–65 (1993)

    Google Scholar 

  16. Masek, J.G., Lindsay, F.E., Goward, S.N.: Dynamics of urban growth in the Washington DC metropolitan area, 1973-1996, from Landsat observations. Int. J. Rem. Sensing 21, 3472–3486 (2000)

    Article  Google Scholar 

  17. Moran, P.: The interpretation of statistical maps. Journal of the Royal Statistical Society (10) (1948)

    Google Scholar 

  18. Muchoney, D.M., Haack, B.N.: Change detection for monitoring forest defoliation. Photogrammetric Engineering and Remote Sensing 60, 1243–1314 (1994)

    Google Scholar 

  19. Murgante, B., Danese, M.: “Urban versus Rural: the decrease of agricultural areas and the development of urban zones analyzed with spatial statistics” Special Issue on Environmental and agricultural data processing for water and territory management. International Journal of Agricultural and Environmental Information Systems (IJAEIS) 2(2), 16–28 (2011) ISSN 1947-3192, doi:10.4018/jaeis.2011070102

    Google Scholar 

  20. Nelson, R.F.: Detecting forest canopy change due to insect activity using land sat MSS. Photogrammetric Engineering and Remote Sensing 49, 1303–1314 (1983)

    Google Scholar 

  21. Sailer, C.T., Eason, E.L.E., Brickey, J.L.: Operational multispectral information extraction: the DLPO image interpretation program. Photogrammetric Engineering and Remote Sensing 63, 129–136 (1997)

    Google Scholar 

  22. Shen, G.: Fractal dimension and fractal growth of urbanized areas. Int. J. Geogr. Inf. Sci. 16, 419–437 (2002)

    Article  Google Scholar 

  23. Tateishi, R., Kajiwara, K.: Global Lands Cover Monitoring by NOAA NDVI Data. In: Proceeding of International Workshop of Environmental Monitoring from Space, Taejon, Korea, pp. 37–48 (1991)

    Google Scholar 

  24. Tobler, W.R.: A computer movie simulating urban growth in the Detroit region. Economic Geography 46(2), 234–240 (1970)

    Article  Google Scholar 

  25. United Nations Population Division (2001) World Population Monitoring 2001: Population, environment and development (2001), http://www.un.org/esa/population/publications/wpm/wpm2001.pdf

  26. Yang, X., Lo, C.P.: Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. Int. J. Rem. Sensing 23, 1775–1798 (2002)

    Article  MathSciNet  Google Scholar 

  27. Yuan, F., Sawaya, K., Loeffelholz, B.C., Bauer, M.E.: Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Rem. Sensing Environ. 98, 317–328 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nolè, G., Danese, M., Murgante, B., Lasaponara, R., Lanorte, A. (2012). Using Spatial Autocorrelation Techniques and Multi-temporal Satellite Data for Analyzing Urban Sprawl. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2012. ICCSA 2012. Lecture Notes in Computer Science, vol 7335. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31137-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31137-6_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31136-9

  • Online ISBN: 978-3-642-31137-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics