iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-31087-4_13
CPMD: A Matlab Toolbox for Change Point and Constrained Motif Discovery | SpringerLink
Skip to main content

CPMD: A Matlab Toolbox for Change Point and Constrained Motif Discovery

  • Conference paper
Advanced Research in Applied Artificial Intelligence (IEA/AIE 2012)

Abstract

Change Point Discovery (CPD) and Constrained Motif Discovery (CMD) are two essential problems in data mining with applications in many fields including robotics, economics, neuroscience and other fields. In this paper, we show that these two problems are related and report the development of a MATLAB Toolbox (CPMD) that encapsulates several useful algorithms including new variants to solve these two related problems. The Toolbox is then used to study the effect of distance function choice in CPD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alippi, C., Roveri, M.: An adaptive CUSUM-based test for signal change detection. In: 2006 IEEE International Symposium on Circuits and Systems, p. 4 (2006)

    Google Scholar 

  2. Basseville, M., Nikiforov, I.: Detection of abrupt changes: theory and application, vol. 15. Citeseer (1993)

    Google Scholar 

  3. Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: KDD, pp. 493–498 (2003)

    Google Scholar 

  4. Gombay, E.: Change detection in autoregressive time series. J. Multivar. Anal. 99(3), 451–464 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hirano, S., Tsumoto, S.: Mining similar temporal patterns in long time-series data and its application to medicine. In: ICDM, p. 219 (2002)

    Google Scholar 

  6. Ide, T., Inoue, K.: Knowledge discovery from heterogeneous dynamic systems using change-point correlations. In: Proc. SIAM Intl. Conf. Data Mining (2005)

    Google Scholar 

  7. Jensen, K.L., Styczynxki, M.P., Rigoutsos, I., Stephanopoulos, G.N.: A generic motif discovery algorithm for sequenctial data. BioInformatics 22(1), 21–28 (2006)

    Article  Google Scholar 

  8. Kadambe, S., Boudreaux-Bartels, G.: Application of the wavelet transform for pitch detection of speech signals. IEEE Transactions on Information Theory 38(2), 917–924 (1992)

    Article  Google Scholar 

  9. Lin, J., Keogh, E., Lonardi, S., Patel, P.: Finding motifs in time series. In: The 2nd Workshop on Temporal Data Mining, at the 8th ACM SIGKDD International, pp. 53–68 (2002)

    Google Scholar 

  10. Minnen, D., Essa, I., Isbell, C.L., Starner, T.: Detecting Subdimensional Motifs: An Efficient Algorithm for Generalized Multivariate Pattern Discovery. In: ICDM (2007)

    Google Scholar 

  11. Minnen, D., Starner, T., Essa, I., Isbell, C.: Improving activity discovery with automatic neighborhood estimation. In: Int. Joint Conf. on Arti. Intell. (2007)

    Google Scholar 

  12. Miwa, H., Itoh, K., Matsumoto, M., Zecca, M., Takanobu, H., Rocella, S., Carrozza, M., Dario, P., Takanishi, A.: Effective emotional expressions with expression humanoid robot we-4rii: integration of humanoid robot hand rch-1. In: IROS, vol. 3, pp. 2203–2208 (2004)

    Google Scholar 

  13. Mohammad, Y., Nishida, T.: Learning interaction protocols using augmented baysian networks applied to guided navigation. In: IROS, pp. 4119–4126 (2010)

    Google Scholar 

  14. Mohammad, Y., Nishida, T.: Constrained motif discovery in time series. New Generation Computing 27(4), 319–346 (2009)

    Article  MATH  Google Scholar 

  15. Mohammad, Y., Nishida, T.: Robust Singular Spectrum Transform. In: Chien, B.-C., Hong, T.-P., Chen, S.-M., Ali, M. (eds.) IEA/AIE 2009. LNCS, vol. 5579, pp. 123–132. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Mohammad, Y., Nishida, T.: Using physiological signals to detect natural interactive behavior. Applied Intelligence 33, 79–92 (2010)

    Article  Google Scholar 

  17. Mohammad, Y., Nishida, T.: Discovering causal change relationships between processes in complex systems. In: 2011 IEEE/SICE SII (2011) (to appear)

    Google Scholar 

  18. Mohammad, Y., Nishida, T.: On comparing SSA-based change point discovery algorithms. In: 2011 IEEE/SICE SII (2011) (to appear)

    Google Scholar 

  19. Mohammad, Y., Nishida, T.: Self-initiated imitation learningdiscovering what to imitate. In: AAMAS (submitted, 2012)

    Google Scholar 

  20. Mohammad, Y., Nishida, T., Okada, S.: Unsupervised simultaneous learning of gestures, actions and their associations for human-robot interaction. In: IROS, pp. 2537–2544 (2009)

    Google Scholar 

  21. Moskvina, V., Zhigljavsky, A.: An algorithm based on singular spectrum analysis for change-point detection. Communications in Statistics, Simulation and Computation 32(4), 319–352 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Oates, T.: PERUSE: An unsupervised algorithm for finding recurring patterns in time series. In: ICDM, pp. 330–337 (2002)

    Google Scholar 

  23. Page, E.S.: Continuous inspection schemes. Biometrika 44, 100–115 (1954)

    MathSciNet  Google Scholar 

  24. Tang, H., Liao, S.S.: Discovering original motifs with different lengths from time series. Know.-Based Syst. 21(7), 666–671 (2008)

    Article  Google Scholar 

  25. CPMD Toolbox, http://www.ii.ist.i.kyoto-u.ac.jp/~yasser/cpmd/cpmd.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mohammad, Y., Ohmoto, Y., Nishida, T. (2012). CPMD: A Matlab Toolbox for Change Point and Constrained Motif Discovery. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds) Advanced Research in Applied Artificial Intelligence. IEA/AIE 2012. Lecture Notes in Computer Science(), vol 7345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31087-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31087-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31086-7

  • Online ISBN: 978-3-642-31087-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics