Abstract
Change Point Discovery (CPD) and Constrained Motif Discovery (CMD) are two essential problems in data mining with applications in many fields including robotics, economics, neuroscience and other fields. In this paper, we show that these two problems are related and report the development of a MATLAB Toolbox (CPMD) that encapsulates several useful algorithms including new variants to solve these two related problems. The Toolbox is then used to study the effect of distance function choice in CPD.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alippi, C., Roveri, M.: An adaptive CUSUM-based test for signal change detection. In: 2006 IEEE International Symposium on Circuits and Systems, p. 4 (2006)
Basseville, M., Nikiforov, I.: Detection of abrupt changes: theory and application, vol. 15. Citeseer (1993)
Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: KDD, pp. 493–498 (2003)
Gombay, E.: Change detection in autoregressive time series. J. Multivar. Anal. 99(3), 451–464 (2008)
Hirano, S., Tsumoto, S.: Mining similar temporal patterns in long time-series data and its application to medicine. In: ICDM, p. 219 (2002)
Ide, T., Inoue, K.: Knowledge discovery from heterogeneous dynamic systems using change-point correlations. In: Proc. SIAM Intl. Conf. Data Mining (2005)
Jensen, K.L., Styczynxki, M.P., Rigoutsos, I., Stephanopoulos, G.N.: A generic motif discovery algorithm for sequenctial data. BioInformatics 22(1), 21–28 (2006)
Kadambe, S., Boudreaux-Bartels, G.: Application of the wavelet transform for pitch detection of speech signals. IEEE Transactions on Information Theory 38(2), 917–924 (1992)
Lin, J., Keogh, E., Lonardi, S., Patel, P.: Finding motifs in time series. In: The 2nd Workshop on Temporal Data Mining, at the 8th ACM SIGKDD International, pp. 53–68 (2002)
Minnen, D., Essa, I., Isbell, C.L., Starner, T.: Detecting Subdimensional Motifs: An Efficient Algorithm for Generalized Multivariate Pattern Discovery. In: ICDM (2007)
Minnen, D., Starner, T., Essa, I., Isbell, C.: Improving activity discovery with automatic neighborhood estimation. In: Int. Joint Conf. on Arti. Intell. (2007)
Miwa, H., Itoh, K., Matsumoto, M., Zecca, M., Takanobu, H., Rocella, S., Carrozza, M., Dario, P., Takanishi, A.: Effective emotional expressions with expression humanoid robot we-4rii: integration of humanoid robot hand rch-1. In: IROS, vol. 3, pp. 2203–2208 (2004)
Mohammad, Y., Nishida, T.: Learning interaction protocols using augmented baysian networks applied to guided navigation. In: IROS, pp. 4119–4126 (2010)
Mohammad, Y., Nishida, T.: Constrained motif discovery in time series. New Generation Computing 27(4), 319–346 (2009)
Mohammad, Y., Nishida, T.: Robust Singular Spectrum Transform. In: Chien, B.-C., Hong, T.-P., Chen, S.-M., Ali, M. (eds.) IEA/AIE 2009. LNCS, vol. 5579, pp. 123–132. Springer, Heidelberg (2009)
Mohammad, Y., Nishida, T.: Using physiological signals to detect natural interactive behavior. Applied Intelligence 33, 79–92 (2010)
Mohammad, Y., Nishida, T.: Discovering causal change relationships between processes in complex systems. In: 2011 IEEE/SICE SII (2011) (to appear)
Mohammad, Y., Nishida, T.: On comparing SSA-based change point discovery algorithms. In: 2011 IEEE/SICE SII (2011) (to appear)
Mohammad, Y., Nishida, T.: Self-initiated imitation learningdiscovering what to imitate. In: AAMAS (submitted, 2012)
Mohammad, Y., Nishida, T., Okada, S.: Unsupervised simultaneous learning of gestures, actions and their associations for human-robot interaction. In: IROS, pp. 2537–2544 (2009)
Moskvina, V., Zhigljavsky, A.: An algorithm based on singular spectrum analysis for change-point detection. Communications in Statistics, Simulation and Computation 32(4), 319–352 (2003)
Oates, T.: PERUSE: An unsupervised algorithm for finding recurring patterns in time series. In: ICDM, pp. 330–337 (2002)
Page, E.S.: Continuous inspection schemes. Biometrika 44, 100–115 (1954)
Tang, H., Liao, S.S.: Discovering original motifs with different lengths from time series. Know.-Based Syst. 21(7), 666–671 (2008)
CPMD Toolbox, http://www.ii.ist.i.kyoto-u.ac.jp/~yasser/cpmd/cpmd.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mohammad, Y., Ohmoto, Y., Nishida, T. (2012). CPMD: A Matlab Toolbox for Change Point and Constrained Motif Discovery. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds) Advanced Research in Applied Artificial Intelligence. IEA/AIE 2012. Lecture Notes in Computer Science(), vol 7345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31087-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-31087-4_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31086-7
Online ISBN: 978-3-642-31087-4
eBook Packages: Computer ScienceComputer Science (R0)