Abstract
Salient feature tracking for endoscopic images has been investigated in the past for 3D reconstruction of endoscopic scenes as well as tracking of tissue through a video sequence. Recent work in the field has shown success in acquiring dense salient feature profiling of the scene. However, there has been relatively little work in performing long-term feature tracking for capturing tissue deformation. In addition, real-time solutions for tracking tissue features result in sparse densities, rely on restrictive scene and camera assumptions, or are limited in feature distinctiveness. In this paper, we develop a novel framework to enable long-term tracking of image features. We implement two fast and robust feature algorithms, STAR and BRIEF, for application to endoscopic images. We show that we are able to acquire dense sets of salient features at real-time speeds, and are able to track their positions for long periods of time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, M., Konolige, K., Blas, M.: CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary Robust Independent Elementary Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)
Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: IEEE Int. C. Pattern Recognition, pp. 2756–2759 (2010)
Lo, B., Chung, A., Stoyanov, D., Mylonas, G., Yang, G.-Z.: Real-time intra-operative 3d tissue deformation recovery. In: I. S. Biomedical Imaging, pp. 1387–1390 (2008)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Computer Vision 60, 91–110 (2004)
Luó, X., Feuerstein, M., Reichl, T., Kitasaka, T., Mori, K.: An Application Driven Comparison of Several Feature Extraction Algorithms in Bronchoscope Tracking During Navigated Bronchoscopy. In: Liao, H., Edwards, P.J., Pan, X., Fan, Y., Yang, G.-Z. (eds.) MIAR 2010. LNCS, vol. 6326, pp. 475–484. Springer, Heidelberg (2010)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE T. Pattern Anal. 27, 1615–1630 (2005)
Mountney, P., Stoyanov, D., Davison, A., Yang, G.-Z.: Simultaneous Stereoscope Localization and Soft-Tissue Mapping for Minimal Invasive Surgery. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 347–354. Springer, Heidelberg (2006)
Mountney, P., Lo, B., Thiemjarus, S., Stoyanov, D., Zhong-Yang, G.: A Probabilistic Framework for Tracking Deformable Soft Tissue in Minimally Invasive Surgery. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 34–41. Springer, Heidelberg (2007)
Mountney, P., Yang, G.-Z.: Soft Tissue Tracking for Minimally Invasive Surgery: Learning Local Deformation Online. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 364–372. Springer, Heidelberg (2008)
Mountney, P., Stoyanov, D., Yang, G.-Z.: Three-dimensional tissue deformation recovery and tracking. IEEE Signal Processing Magazine 27, 14–24 (2010)
Ortmaier, T., Groeger, M., Boehm, D., Falk, V., Hirzinger, G.: Motion estimation in beating heart surgery. IEEE T. Biomed. Eng. 52(10), 1729–1740 (2005)
Richa, R., Bo, A. P., Poignet, P.: Towards robust 3D visual tracking for motion compensation in beating heart surgery. Med. Image Anal. 15(3), 302-315 (2011)
Rosten, E., Drummond, T.: Machine Learning for High-Speed Corner Detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)
Sauvee, M., Noce, A., Poignet, P., Triboulet, J., Dombre, E.: Three-dimensional heart motion estimation using endoscopic monocular vision system: From artificial landmarks to texture analysis. Biomed. Signal Process. Control 2(3), 199–207 (2007)
Shi, J., Tomasi, C.: Good features to track. In: IEEE Int. C. Computer Vision and Pattern Recognition, pp. 593–600 (1994)
Sinha, S. N., Frahm, J.-M., Pollefeys, M., Genc, Y.: Gpu-based video feature tracking and matching. In: Workshop on Edge Computing Using New Commodity Architectures, Technical Report (2006)
Stoyanov, D., Mylonas, G.P., Deligianni, F., Darzi, A., Yang, G.-Z.: Soft-Tissue Motion Tracking and Structure Estimation for Robotic Assisted MIS Procedures. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 139–146. Springer, Heidelberg (2005)
Ukimura, O., Gill, I., Desai, M.O.: Real-time transrectal ultrasonography during laparoscopic radical prostatectomy. Journal of Urology 172(1), 112–118 (2004)
Wang, H., Mirota, D., Ishii, M., Hager, G.: Robust motion estimation and structure recovery from endoscopic image sequences with an adaptive scale kernel consensus estimator. In: Int. C. Computer Vision and Pattern Recognition, pp. 1–7 (2008)
Wengert, C., Cattin, P.C., Duff, J.M., Baur, C., Székely, G.: Markerless Endoscopic Registration and Referencing. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 816–823. Springer, Heidelberg (2006)
Willow Garage. Star detector, http://pr.willowgarage.com/wiki/star_detector
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yip, M.C., Lowe, D.G., Salcudean, S.E., Rohling, R.N., Nguan, C.Y. (2012). Real-Time Methods for Long-Term Tissue Feature Tracking in Endoscopic Scenes. In: Abolmaesumi, P., Joskowicz, L., Navab, N., Jannin, P. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2012. Lecture Notes in Computer Science, vol 7330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30618-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-30618-1_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30617-4
Online ISBN: 978-3-642-30618-1
eBook Packages: Computer ScienceComputer Science (R0)