iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-30618-1_4
Real-Time Methods for Long-Term Tissue Feature Tracking in Endoscopic Scenes | SpringerLink
Skip to main content

Real-Time Methods for Long-Term Tissue Feature Tracking in Endoscopic Scenes

  • Conference paper
Information Processing in Computer-Assisted Interventions (IPCAI 2012)

Abstract

Salient feature tracking for endoscopic images has been investigated in the past for 3D reconstruction of endoscopic scenes as well as tracking of tissue through a video sequence. Recent work in the field has shown success in acquiring dense salient feature profiling of the scene. However, there has been relatively little work in performing long-term feature tracking for capturing tissue deformation. In addition, real-time solutions for tracking tissue features result in sparse densities, rely on restrictive scene and camera assumptions, or are limited in feature distinctiveness. In this paper, we develop a novel framework to enable long-term tracking of image features. We implement two fast and robust feature algorithms, STAR and BRIEF, for application to endoscopic images. We show that we are able to acquire dense sets of salient features at real-time speeds, and are able to track their positions for long periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, M., Konolige, K., Blas, M.: CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary Robust Independent Elementary Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: IEEE Int. C. Pattern Recognition, pp. 2756–2759 (2010)

    Google Scholar 

  4. Lo, B., Chung, A., Stoyanov, D., Mylonas, G., Yang, G.-Z.: Real-time intra-operative 3d tissue deformation recovery. In: I. S. Biomedical Imaging, pp. 1387–1390 (2008)

    Google Scholar 

  5. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  6. Luó, X., Feuerstein, M., Reichl, T., Kitasaka, T., Mori, K.: An Application Driven Comparison of Several Feature Extraction Algorithms in Bronchoscope Tracking During Navigated Bronchoscopy. In: Liao, H., Edwards, P.J., Pan, X., Fan, Y., Yang, G.-Z. (eds.) MIAR 2010. LNCS, vol. 6326, pp. 475–484. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE T. Pattern Anal. 27, 1615–1630 (2005)

    Article  Google Scholar 

  8. Mountney, P., Stoyanov, D., Davison, A., Yang, G.-Z.: Simultaneous Stereoscope Localization and Soft-Tissue Mapping for Minimal Invasive Surgery. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 347–354. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Mountney, P., Lo, B., Thiemjarus, S., Stoyanov, D., Zhong-Yang, G.: A Probabilistic Framework for Tracking Deformable Soft Tissue in Minimally Invasive Surgery. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 34–41. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Mountney, P., Yang, G.-Z.: Soft Tissue Tracking for Minimally Invasive Surgery: Learning Local Deformation Online. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 364–372. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Mountney, P., Stoyanov, D., Yang, G.-Z.: Three-dimensional tissue deformation recovery and tracking. IEEE Signal Processing Magazine 27, 14–24 (2010)

    Article  Google Scholar 

  12. Ortmaier, T., Groeger, M., Boehm, D., Falk, V., Hirzinger, G.: Motion estimation in beating heart surgery. IEEE T. Biomed. Eng. 52(10), 1729–1740 (2005)

    Article  Google Scholar 

  13. Richa, R., Bo, A. P., Poignet, P.: Towards robust 3D visual tracking for motion compensation in beating heart surgery. Med. Image Anal. 15(3), 302-315 (2011)

    Google Scholar 

  14. Rosten, E., Drummond, T.: Machine Learning for High-Speed Corner Detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Sauvee, M., Noce, A., Poignet, P., Triboulet, J., Dombre, E.: Three-dimensional heart motion estimation using endoscopic monocular vision system: From artificial landmarks to texture analysis. Biomed. Signal Process. Control 2(3), 199–207 (2007)

    Article  Google Scholar 

  16. Shi, J., Tomasi, C.: Good features to track. In: IEEE Int. C. Computer Vision and Pattern Recognition, pp. 593–600 (1994)

    Google Scholar 

  17. Sinha, S. N., Frahm, J.-M., Pollefeys, M., Genc, Y.: Gpu-based video feature tracking and matching. In: Workshop on Edge Computing Using New Commodity Architectures, Technical Report (2006)

    Google Scholar 

  18. Stoyanov, D., Mylonas, G.P., Deligianni, F., Darzi, A., Yang, G.-Z.: Soft-Tissue Motion Tracking and Structure Estimation for Robotic Assisted MIS Procedures. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 139–146. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Ukimura, O., Gill, I., Desai, M.O.: Real-time transrectal ultrasonography during laparoscopic radical prostatectomy. Journal of Urology 172(1), 112–118 (2004)

    Article  Google Scholar 

  20. Wang, H., Mirota, D., Ishii, M., Hager, G.: Robust motion estimation and structure recovery from endoscopic image sequences with an adaptive scale kernel consensus estimator. In: Int. C. Computer Vision and Pattern Recognition, pp. 1–7 (2008)

    Google Scholar 

  21. Wengert, C., Cattin, P.C., Duff, J.M., Baur, C., Székely, G.: Markerless Endoscopic Registration and Referencing. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 816–823. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Willow Garage. Star detector, http://pr.willowgarage.com/wiki/star_detector

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yip, M.C., Lowe, D.G., Salcudean, S.E., Rohling, R.N., Nguan, C.Y. (2012). Real-Time Methods for Long-Term Tissue Feature Tracking in Endoscopic Scenes. In: Abolmaesumi, P., Joskowicz, L., Navab, N., Jannin, P. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2012. Lecture Notes in Computer Science, vol 7330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30618-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30618-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30617-4

  • Online ISBN: 978-3-642-30618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics