iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-29700-7_22
On Editing Graphs into 2-Club Clusters | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7285))

Abstract

In this paper, we introduce and study three graph modification problems: 2-Club Cluster Vertex Deletion, 2-Club Cluster Edge Deletion, and 2-Club Cluster Editing. In 2-Club Cluster Vertex Deletion (2-Club Cluster Edge Deletion, and 2-Club Cluster Editing), one is given an undirected graph G and an integer k ≥ 0, and needs to decide whether it is possible to transform G into a 2-club cluster graph by deleting at most k vertices (by deleting at most k edges, and by deleting and adding totally at most k edges). Here, a 2-club cluster graph is a graph in which every connected component is of diameter 2. We first prove that all these three problems are NP-complete. Then, we present for 2-Club Cluster Vertex Deletion a fixed parameter algorithm with running time O  ∗ (3.31k), and for 2-Club Cluster Edge Deletion a fixed parameter algorithm with running time O  ∗ (2.74k).

Research supported by the National Natural Science Foundation of China (61070019) and the National Natural Science Foundation of China (60603007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alba, R.D.: A graph-theoretic definition of a sociometric clique. Journal of Mathematical Sociology 3, 113–126 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1-3), 89–113 (2004)

    Article  MATH  Google Scholar 

  3. Balasundaram, B., Butenko, S., Trukhanov, S.: Novel approaches for analyzing biological networks. Journal of Combinatorial Optimization 10(1), 23–39 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: Onproblems without polynomial kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer (1999)

    Google Scholar 

  6. Garey, M., Johnson, D.: Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman and Company (1979)

    Google Scholar 

  7. Guo, J., Kanj, I.A., Komusiewicz, C., Uhlmann, J.: Editing graphs into disjoint unions of dense clusters. Algorithmica 61, 949–970 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: A more relaxed model for graph-based data clustering: s-plex cluster editing. SIAM Journal on Discrete Mathematics 24(4), 1662–1683 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory of Computing Systems 47(1), 196–217 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lee, V.E., Ruan, N., Jin, R., Aggarwal, C.: A survey of algorithms for dense subgraph discovery. In: Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data, pp. 303–336 (2010)

    Google Scholar 

  11. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. Journal of Computer Systems and Science 20(2), 219–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mahdavi, F., Balasundaram, B.: On inclusionwise maximal and max-imum cardinality k-clubs in graphs (2010), http://iem.okstate.edu/baski/files/DISCO-k-clubs-2010-02-11.pdf

  13. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press (2006)

    Google Scholar 

  14. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1-2), 173–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xu, R., Wunsch II, D.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, H., Zhang, P., Zhu, D. (2012). On Editing Graphs into 2-Club Clusters. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 7285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29700-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29700-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29699-4

  • Online ISBN: 978-3-642-29700-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics