Abstract
We consider the recent randomized \(\frac 34\)-algorithm for MAX SAT of Poloczek and Schnitger. We give a much simpler set of probabilities for setting the variables to true or false, which achieve the same expected performance guarantee. Our algorithm suggests a conceptually simple way to get a deterministic algorithm: rather than comparing to an unknown optimal solution, we instead compare the algorithm’s output to the optimal solution of an LP relaxation. This gives rise to a new LP rounding algorithm, which also achieves a performance guarantee of \(\frac 34\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avidor, A., Berkovitch, I., Zwick, U.: Improved Approximation Algorithms for MAX NAE-SAT and MAX SAT. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 27–40. Springer, Heidelberg (2006)
Chen, J., Friesen, D.K., Zheng, H.: Tight bound on Johnson’s algorithm for maximum satisfiability. J. Comput. Syst. Sci. 58, 622–640 (1999)
Costello, K.P., Shapira, A., Tetali, P.: Randomized greedy: new variants of some classic approximation algorithms. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 647–655. SIAM (2011)
Engebretsen, L.: Simplified tight analysis of Johnson’s algorithm. Inf. Process. Lett. 92(4), 207–210 (2004)
Goemans, M.X., Williamson, D.P.: New \(\frac{3}{4}\) -approximation algorithms for the maximum satisfiability problem. SIAM J. Discrete Math. 7(4), 656–666 (1994)
Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. System Sci. 9, 256–278 (1974); Fifth Annual ACM Symposium on the Theory of Computing, Austin, Tex. (1973)
Poloczek, M.: Bounds on Greedy Algorithms for MAX SAT. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 37–48. Springer, Heidelberg (2011)
Poloczek, M., Schnitger, G.: Randomized variants of Johnson’s algorithm for MAX SAT. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 656–663. SIAM (2011)
Yannakakis, M.: On the approximation of maximum satisfiability. Journal of Algorithms 17, 475–502 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van Zuylen, A. (2012). Simpler 3/4-Approximation Algorithms for MAX SAT. In: Solis-Oba, R., Persiano, G. (eds) Approximation and Online Algorithms. WAOA 2011. Lecture Notes in Computer Science, vol 7164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29116-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-29116-6_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29115-9
Online ISBN: 978-3-642-29116-6
eBook Packages: Computer ScienceComputer Science (R0)