iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-29116-6_16
Simpler 3/4-Approximation Algorithms for MAX SAT | SpringerLink
Skip to main content

Simpler 3/4-Approximation Algorithms for MAX SAT

  • Conference paper
Approximation and Online Algorithms (WAOA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7164))

Included in the following conference series:

Abstract

We consider the recent randomized \(\frac 34\)-algorithm for MAX SAT of Poloczek and Schnitger. We give a much simpler set of probabilities for setting the variables to true or false, which achieve the same expected performance guarantee. Our algorithm suggests a conceptually simple way to get a deterministic algorithm: rather than comparing to an unknown optimal solution, we instead compare the algorithm’s output to the optimal solution of an LP relaxation. This gives rise to a new LP rounding algorithm, which also achieves a performance guarantee of \(\frac 34\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avidor, A., Berkovitch, I., Zwick, U.: Improved Approximation Algorithms for MAX NAE-SAT and MAX SAT. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 27–40. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Chen, J., Friesen, D.K., Zheng, H.: Tight bound on Johnson’s algorithm for maximum satisfiability. J. Comput. Syst. Sci. 58, 622–640 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Costello, K.P., Shapira, A., Tetali, P.: Randomized greedy: new variants of some classic approximation algorithms. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 647–655. SIAM (2011)

    Google Scholar 

  4. Engebretsen, L.: Simplified tight analysis of Johnson’s algorithm. Inf. Process. Lett. 92(4), 207–210 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goemans, M.X., Williamson, D.P.: New \(\frac{3}{4}\) -approximation algorithms for the maximum satisfiability problem. SIAM J. Discrete Math. 7(4), 656–666 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. System Sci. 9, 256–278 (1974); Fifth Annual ACM Symposium on the Theory of Computing, Austin, Tex. (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Poloczek, M.: Bounds on Greedy Algorithms for MAX SAT. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 37–48. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Poloczek, M., Schnitger, G.: Randomized variants of Johnson’s algorithm for MAX SAT. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 656–663. SIAM (2011)

    Google Scholar 

  9. Yannakakis, M.: On the approximation of maximum satisfiability. Journal of Algorithms 17, 475–502 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Zuylen, A. (2012). Simpler 3/4-Approximation Algorithms for MAX SAT. In: Solis-Oba, R., Persiano, G. (eds) Approximation and Online Algorithms. WAOA 2011. Lecture Notes in Computer Science, vol 7164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29116-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29116-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29115-9

  • Online ISBN: 978-3-642-29116-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics