iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-29066-4_10
Comparing Multiobjective Artificial Bee Colony Adaptations for Discovering DNA Motifs | SpringerLink
Skip to main content

Comparing Multiobjective Artificial Bee Colony Adaptations for Discovering DNA Motifs

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2012)

Abstract

Multiobjective optimization is successfully applied in many biological problems. Currently, most biological problems require to optimize more than one single objective at the same time, resulting in Multiobjective Optimization Problems (MOP). In the last years, multiple metaheuristics have been successfully used to solve optimization problems. However, many of them are designed to solve problems with only one objective function. In this work, we study several multiobjective adaptations to solve one of the most important biological problems, the Motif Discovery Problem (MDP). MDP aims to discover novel Transcription Factor Binding Sites (TFBS) in DNA sequences, maximizing three conflicting objectives: motif length, support, and similarity. For this purpose, we have used the Artificial Bee Colony algorithm, a novel Swarm Intelligence algorithm based on the intelligent behavior of honey bees. As we will see, the use of one or another multiobjective adaptation causes significant differences in the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley & Sons (2001)

    Google Scholar 

  2. Fogel, L.J.: Artificial Intelligence Through Simulated Evolution. Forty Years of Evolutionary Programming. John Wiley & Sonc, Inc., New York (1999)

    Google Scholar 

  3. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Turkey (2005)

    Google Scholar 

  4. D’haeseleer, P.: What are DNA sequence motifs? Nature Biotechnology 24(4), 423–425 (2006)

    Article  Google Scholar 

  5. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: Proceedings of the 5th International Conference on Genetic Algorithms, San Francisco, CA, USA, pp. 416–423 (1993)

    Google Scholar 

  6. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Transactions on Evolutionary Computation 10(1), 29–38 (2006)

    Article  Google Scholar 

  7. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  9. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. Technical report tik-report 103, Swiss Federal Institute of Technology Zurich, Switzeland (2001)

    Google Scholar 

  10. Tompa, M., et al.: Assessing computational tools for the discovery of transcription factor binding sites. Nature Biotechnology 23(1), 137–144 (2005)

    Article  MathSciNet  Google Scholar 

  11. Liu, F.F.M., Tsai, J.J.P., Chen, R.M., Chen, S.N., Shih, S.H.: FMGA: Finding motifs by genetic algorithm. In: Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE 2004), pp. 459–466 (2004)

    Google Scholar 

  12. Stine, M., Dasgupta, D., Mukatira, S.: Motif discovery in upstream sequences of coordinately expressed genes. In: The 2003 Congress on Evolutionary Computation (CEC 2003), vol. 3, pp. 1596–1603 (2003)

    Google Scholar 

  13. Che, D., Song, Y., Rashedd, K.: MDGA: Motif discovery using a genetic algorithm. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation (GECCO 2005), pp. 447–452 (2005)

    Google Scholar 

  14. Shao, L., Chen, Y.: Bacterial foraging optimization algorithm integrating tabu search for motif discovery. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2009), pp. 415–418 (2009)

    Google Scholar 

  15. Shao, L., Chen, Y., Abraham, A.: Motif discovery using evolutionary algorithms. In: International Conference of Soft Computing and Pattern Recognition (SOCPAR 2009), pp. 420–425 (2009)

    Google Scholar 

  16. Fogel, G.B., et al.: Discovery of sequence motifs related to coexpression of genes using evolutionary computation. Nucleic Acids Research 32(13), 3826–3835 (2004)

    Article  Google Scholar 

  17. Fogel, G.B., et al.: Evolutionary computation for discovery of composite transcription factor binding sites. Nucleic Acids Research 36(21), e142, 1–14 (2008)

    Article  Google Scholar 

  18. Kaya, M.: MOGAMOD: Multi-objective genetic algorithm for motif discovery. Expert Systems with Applications 36(2), 1039–1047 (2009)

    Article  Google Scholar 

  19. Wingender, E., Dietze, P., Karas, H., Knuppel, R.: TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Research 24(1), 238–241 (1996)

    Article  Google Scholar 

  20. González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Finding Motifs in DNA Sequences Applying a Multiobjective Artificial Bee Colony (MOABC) Algorithm. In: Giacobini, M. (ed.) EvoBIO 2011. LNCS, vol. 6623, pp. 89–100. Springer, Heidelberg (2011)

    Google Scholar 

  21. Sheskin, D.J.: Handbook of parametric and nonparametric statistical procedures, 4th edn. Chapman & Hall/CRC Press, New York (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M. (2012). Comparing Multiobjective Artificial Bee Colony Adaptations for Discovering DNA Motifs. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2012. Lecture Notes in Computer Science, vol 7246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29066-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29066-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29065-7

  • Online ISBN: 978-3-642-29066-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics