iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-28076-4_21
Heuristics for the Maximum 2-layer RAC Subgraph Problem | SpringerLink
Skip to main content

Heuristics for the Maximum 2-layer RAC Subgraph Problem

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7157))

Included in the following conference series:

Abstract

This paper studies 2-layer RAC drawings of bipartite graphs. The contribution is as follows: (i) We prove that the problem of computing the maximum 2-layer RAC subgraph is NP-hard even when the vertex ordering on one layer is fixed; this extends a previous NP-hardness result that allows the vertices to be permuted on each layer. (ii) We describe a 3-approximation algorithm for the maximum 2-layer RAC subgraph problem when the vertex ordering on each layer is not fixed, and a heuristic for the case that the vertex ordering on one of the layers is fixed. (iii) We present an experimental study that evaluates the effectiveness of the proposed approaches.

Work supported in part by MIUR of Italy under project AlgoDEEP prot. 2008TFBWL4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angelini, P., Cittadini, L., Di Battista, G., Didimo, W., Frati, F., Kaufmann, M., Symvonis, A.: On the perspectives opened by right angle crossing drawings. JGAA 15(1), 53–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arikushi, K., Fulek, R., Keszegh, B., Morić, F., Tóth, C.D.: Graphs that Admit Right Angle Crossing Drawings. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 135–146. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Di Giacomo, E., Didimo, W., Eades, P., Liotta, G.: 2-Layer Right Angle Crossing Drawings. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056, pp. 156–169. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theoretical Computer Science 412(39), 5156–5166 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dujmović, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing graphs. In: Proc. CATS 2010, pp. 19–24. ACS (2010)

    Google Scholar 

  6. Eades, P., McKay, B., Wormald, N.: On an edge crossing problem. In: Proc. of 9th Australian Computer Science Conference, pp. 327–334 (1986)

    Google Scholar 

  7. Eades, P., Kelly, D.: Heuristics for drawing 2-layered networks. Ars Combin. 21, 89–98 (1986)

    MathSciNet  MATH  Google Scholar 

  8. Eades, P., Whitesides, S.H.: Drawing graphs in two layers. Theoretical Computer Science 131(2), 361–374 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11(4), 379–403 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jünger, M., Mutzel, P.: 2-layer straightline crossing minimization: Performance of exact and heuristic algorithms. J. Graph Algorithms Appl. 1 (1997)

    Google Scholar 

  11. van Kreveld, M.: The Quality Ratio of RAC Drawings and Planar Drawings of Planar Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 371–376. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Mutzel, P.: An alternative method to crossing minimization on hierarchical graphs. SIAM J. on Optimization 11(4), 1065–1080 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. on Syst., Man and Cyber. 11(2), 109–125 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Giacomo, E., Didimo, W., Grilli, L., Liotta, G., Romeo, S.A. (2012). Heuristics for the Maximum 2-layer RAC Subgraph Problem. In: Rahman, M.S., Nakano, Si. (eds) WALCOM: Algorithms and Computation. WALCOM 2012. Lecture Notes in Computer Science, vol 7157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28076-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28076-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28075-7

  • Online ISBN: 978-3-642-28076-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics