iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-27660-6_37
Named Entity Disambiguation Based on Explicit Semantics | SpringerLink
Skip to main content

Named Entity Disambiguation Based on Explicit Semantics

  • Conference paper
SOFSEM 2012: Theory and Practice of Computer Science (SOFSEM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7147))

Abstract

In our work we present an approach to the Named Entity Disambiguation based on semantic similarity measure. We employ existing explicit semantics present in datasets such as Wikipedia to construct a disambiguation dictionary and vector–based word model. The analysed documents are transformed into semantic vectors using explicit semantic analysis. The relatedness is computed as cosine similarity between the vectors. The experimental evaluation shows that the proposed approach outperforms traditional approaches such as latent semantic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bagga, A., Baldwin, B.: Entity-based cross-document coreferencing using the Vector Space Model. In: Proceedings of the 36th Annual Meeting on Association for Computational Linguistics, pp. 79–85. Association for Computational Linguistics, Morristown (1998)

    Chapter  Google Scholar 

  2. Barla, M., Bieliková, M.: On Deriving Tagsonomies: Keyword Relations Coming from Crowd. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 309–320. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bunescu, R., Pasca, M.: Using encyclopedic knowledge for named entity disambiguation. In: Proceedings of EACL, pp. 9–16 (2006)

    Google Scholar 

  4. Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data. In: Proceedings of EMNLP-CoNLL, vol. (6), pp. 708–716 (2007)

    Google Scholar 

  5. Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 1606–1611 (2007)

    Google Scholar 

  6. Grishman, R., Sundheim, B.: Message understanding conference-6: A brief history. In: Proceedings of the 16th Conference on Computational Linguistics (COLING 1996), Copenhagen, Denmark, vol. 1, pp. 466–471 (1996)

    Google Scholar 

  7. Guo, J., Xu, G., Cheng, X., Li, H.: Named entity recognition in query. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 2009, p. 267. ACM Press, New York (2009)

    Google Scholar 

  8. Jurgens, D., Stevens, K.: The S-Space Package: An Open Source Package for Word Space Models. In: Proceedings of the ACL 2010 System Demonstrations, pp. 30–35. Association for Computational Linguistics (2010)

    Google Scholar 

  9. Kazi, Z., Ravin, Y.: Whos who? Identifying concepts and entities across multiple documents. In: Proceedings of the 33rd Annual Hawaii International Conference, p. 7. IEEE Computer Society (2000)

    Google Scholar 

  10. Kramár, T., Barla, M., Bieliková, M.: Disambiguating Search by Leveraging a Social Context Based on the Stream of User’s Activity. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 387–392. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Landauer, T.K., Foltz, P.W.: An Introduction to Latent Semantic Analysis. Discourse Processes 1(25), 259–284 (1998)

    Article  Google Scholar 

  12. Lučanský, M., Šimko, M., Bieliková, M.: Enhancing automatic term recognition algorithms with HTML tags processing. In: Rachev, B., Smrikarov, A. (eds.) Proceedings of the 12th Int. Conf. on Computer Systems and Technologies (CompSysTech 2011), pp. 173–178. ACM, New York (2011)

    Chapter  Google Scholar 

  13. Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Language and Cognitive Processes 6(1), 1–28 (1991)

    Article  Google Scholar 

  14. Milne, D., Medelyan, O., Witten, I.: Mining domain-specific thesauri from wikipedia: A case study. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 442–448. IEEE Computer Society, Hong Kong (2006)

    Google Scholar 

  15. Min, J., Jones, G.J.F.: Building User Interest Profiles from Wikipedia Clusters Categories and Subject Descriptors. In: Proceedings of the Workshop on Enriching Information Retrieval (2011)

    Google Scholar 

  16. Nguyen, D., Overwijk, A., Hauff, C., Trieschnigg, D.R.B., Hiemstra, D., de Jong, F.: WikiTranslate: Query Translation for Cross-Lingual Information Retrieval Using Only Wikipedia. In: Peters, C., Deselaers, T., Ferro, N., Gonzalo, J., Jones, G.J.F., Kurimo, M., Mandl, T., Peñas, A., Petras, V. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 58–65. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Nothman, J., Murphy, T., Curran, J.: Analysing Wikipedia and gold-standard corpora for NER training. In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics, pp. 612–620. Association for Computational Linguistics (April 2009)

    Google Scholar 

  18. Ponzetto, S.P., Strube, M.: Knowledge derived from Wikipedia for computing semantic relatedness. Journal of Artificial Intelligence Research 30(1), 181–212 (2007)

    MATH  Google Scholar 

  19. Ravin, Y., Kazi, Z.: Is Hillary Rodham Clinton the president?: disambiguating names across documents. In: Proceedings of the Workshop on Coreference and its Applications, pp. 9–16. Association for Computational Linguistics, Maryland (1999)

    Chapter  Google Scholar 

  20. Strube, M., Ponzetto, S.: WikiRelate! Computing semantic relatedness using Wikipedia. In: Proceedings of the National Conference on Artificial Intelligence, vol. 21, p. 1419. AAAI Press, MIT Press, Menlo Park, Cambridge (1999) (2006)

    Google Scholar 

  21. Ševce, O., Tvarožek, J., Bieliková, M.: Term Ranking and Categorization for Ad-Hoc Navigation. In: Dicheva, D., Dochev, D. (eds.) AIMSA 2010. LNCS, vol. 6304, pp. 71–80. Springer, Heidelberg (2010)

    Google Scholar 

  22. Wacholder, N., Ravin, Y., Choi, M.: Disambiguation of proper names in text. In: Proceedings of the Fifth Conference on Applied Natural Language Processing, pp. 202–208. Association for Computational Linguistics, Stroudsburg (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jačala, M., Tvarožek, J. (2012). Named Entity Disambiguation Based on Explicit Semantics. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds) SOFSEM 2012: Theory and Practice of Computer Science. SOFSEM 2012. Lecture Notes in Computer Science, vol 7147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27660-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27660-6_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27659-0

  • Online ISBN: 978-3-642-27660-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics