Abstract
Reo is a coordination language that can be used to model different systems. Constraint automata form a formal semantics for Reo connectors based on a co-algebraic model of streams. In this paper, we introduce complete constraint automata (CCA) whose extra information about entropy states helps in analyzing and decomposing them into Reo circuits. We show that a complete constraint automaton is invertible. This property helps to partition and decompose a constraint automaton, a process which can be utilized to synthesize Reo circuits from constraint automata, automatically.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arbab, F.: Reo: a channel-based coordination model for component composition. Mathematical Structures in Computer Science 14, 329–366 (2004)
Arbab, F., Baier, C., Rutten, J.J.M.M., Sirjani, M.: Modeling component connectors in Reo by constraint automata (extended abstract). Electr. Notes Theor. Comput. Sci. 97, 25–46 (2004)
Mehta, N.R., Medvidovic, N., Sirjani, M., Arbab, F.: Modeling behavior in compositions of software architectural primitives. In: ASE, pp. 371–374. IEEE Computer Society, Los Alamitos (2004)
Razavi, N., Sirjani, M.: Using Reo for formal specification and verification of system designs. In: MEMOCODE, pp. 113–122. IEEE, Los Alamitos (2006)
Meng, S., Arbab, F.: Web services choreography and orchestration in Reo and constraint automata. In: Cho, Y., Wainwright, R.L., Haddad, H., Shin, S.Y., Koo, Y.W. (eds.) SAC, pp. 346–353. ACM, New York (2007)
Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003)
Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph. SIAM J. Comput. 1, 131–137 (1972)
Krohn, K., Rhodes, J.: Algebraic theory of machines. I. prime decomposition theorem for finite semigroups and machines. Transactions of the American Mathematical Society, vol. 116, pp. 450–464. ACM, New York (1965)
Eilenberg, S.: Automata, languages and machines (1976)
Egri-Nagy, A., Nehaniv, C.L.: Algebraic hierarchical decomposition of finite state automata: Comparison of implementations for Krohn-Rhodes theory. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 315–316. Springer, Heidelberg (2005)
Schützenberger, M.: On the definition of a family of automata. Information and Control, 245–270 (1961)
Kozen, D.: On Kleene algebras and closed semirings. In: Proc. Mathematical Foundations in Computer Science, vol. 452, pp. 26–47 (1990)
Arbab, F., Baier, C., de Boer, F.S., Rutten, J.J.M.M., Sirjani, M.: Synthesis of Reo circuits for implementation of component-connector automata specifications. In: Jacquet, J.M., Picco, G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp. 236–251. Springer, Heidelberg (2005)
Koehler, C., Clarke, D.: Decomposing port automata. In: Shin, S.Y., Ossowski, S. (eds.) SAC, pp. 1369–1373. ACM, New York (2009)
Vuillemin, J., Gama, N.: Compact normal form for regular languages as xor automata. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 24–33. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pourvatan, B., Sirjani, M., Arbab, F., Bonsangue, M.M. (2012). Decomposition of Constraint Automata. In: Barbosa, L.S., Lumpe, M. (eds) Formal Aspects of Component Software. FACS 2010. Lecture Notes in Computer Science, vol 6921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27269-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-27269-1_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27268-4
Online ISBN: 978-3-642-27269-1
eBook Packages: Computer ScienceComputer Science (R0)