iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-25832-9_81
Tracking the Preferences of Users Using Weak Estimators | SpringerLink
Skip to main content

Tracking the Preferences of Users Using Weak Estimators

  • Conference paper
AI 2011: Advances in Artificial Intelligence (AI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7106))

Included in the following conference series:

  • 2323 Accesses

Abstract

Since a social network, by definition, is so diverse, the problem of estimating the preferences of its users is becoming increasingly essential for personalized applications which range from service recommender systems to the targeted advertising of services. However, unlike traditional estimation problems where the underlying target distribution is stationary, estimating a user’s interests, typically, involves non-stationary distributions. The consequent time varying nature of the distribution to be tracked imposes stringent constraints on the “unlearning” capabilities of the estimator used. Therefore, resorting to strong estimators that converge with probability 1 is inefficient since they rely on the assumption that the distribution of the user’s preferences is stationary. In this vein, we propose to use a family of stochastic-learning based Weak estimators for learning and tracking user’s time varying interests. Experimental results demonstrate that our proposed paradigm outperforms some of the traditional legacy approaches that represent the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Basseville, M., Nikiforov, I.V.: Detection of abrupt changes: theory and application. Prentice-Hall, Inc. (1993)

    Google Scholar 

  2. Godoy, D., Amandi, A.: User profiling in personal information agents: a survey. Knowl. Eng. Rev. 20, 329–361 (2005)

    Article  MATH  Google Scholar 

  3. Godoy, D., Schiaffino, S., Amandi, A.: Interface agents personalizing web-based tasks. Cognitive Systems Research, Special Issue on Intelligent Agents and Data Mining for Cognitive Systems 5(3), 207–222 (2004)

    Google Scholar 

  4. Hossain, M.A., Atrey, P.K., El Saddik, A.: Gain-based selection of ambient media services in pervasive environments. Mob. Netw. Appl. 13(6), 599–613 (2008)

    Article  Google Scholar 

  5. Hossain, M.A., Parra, J., Atrey, P.K., El Saddik, A.: A framework for human-centered provisioning of ambient media services. Multimedia Tools and Applications 44, 407–431 (2009)

    Article  Google Scholar 

  6. Koychev, I.: Gradual forgetting for adaptation to concept drift. In: Proceedings of ECAI 2000 Workshop Current Issues in Spatio-Temporal Reasoning, pp. 101–106 (2000)

    Google Scholar 

  7. Koychev, I., Lothian, R.: Tracking drifting concepts by time window optimisation. In: Bramer, M., Coenen, F., Allen, T. (eds.) Research and Development in Intelligent Systems XXII, pp. 46–59. Springer, London (2006)

    Chapter  Google Scholar 

  8. Koychev, I., Schwab, I.: Adaptation to drifting user’s interests. In: Proceedings of ECML 2000 Workshop: Machine Learning in New Information Age, pp. 39–46 (2000)

    Google Scholar 

  9. Maloof, M.A., Michalski, R.S.: Selecting examples for partial memory learning. Machine Learning 41, 27–52 (2000)

    Article  MATH  Google Scholar 

  10. Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological user profiling in recommender systems. ACM Trans. Inf. Syst. 22(1), 54–88 (2004)

    Article  Google Scholar 

  11. Mitchell, T.M., Caruana, R., Freitag, D., McDermott, J., Zabowski, D.: Experience with a learning personal assistant. Commun. ACM 37(7), 80–91 (1994)

    Article  Google Scholar 

  12. Montaner, M., Lpez, B., de la Rosa, J.L.: A taxonomy of recommender agents on the internet. Artificial Intelligence Review 19, 285–330 (2003)

    Article  Google Scholar 

  13. Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction. Prentice Hall (1989)

    Google Scholar 

  14. Naudet, Y., Aghasaryanb, A., Mignon, S., Toms, Y., Senot, C.: Ontology-Based Profiling and Recommendations for Mobile TV. In: Wallace, M., Anagnostopoulos, I.E., Mylonas, P., Bielikova, M. (eds.) Semantics in Adaptive and Personalized Services. SCI, vol. 279, pp. 23–48. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Oommen, B.J., Misra, S.: Fault-tolerant routing in adversarial mobile ad hoc networks: an efficient route estimation scheme for non-stationary environments. Telecommunication Systems 44, 159–169 (2010), 10.1007/s11235-009-9215-4

    Article  Google Scholar 

  16. Oommen, B.J., Rueda, L.: Stochastic learning-based weak estimation of multinomial random variables and its applications to pattern recognition in non-stationary environments. Pattern Recogn. 39(3), 328–341 (2006)

    Article  MATH  Google Scholar 

  17. Rueda, L., Oommen, B.J.: Stochastic automata-based estimators for adaptively compressing files with nonstationary distributions. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 36(5), 1196–1200 (2006)

    Article  Google Scholar 

  18. Shiryayev, A.N.: Optimal Stopping Rules. Springer, Heidelberg (1978)

    Google Scholar 

  19. Stensby, A., Oommen, B.J., Granmo, O.-C.: Language Detection and Tracking in Multilingual Documents Using Weak Estimators. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 600–609. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Thathachar, M.A.L., Sastry, P.S.: Networks of Learning Automata: Techniques for Online Stochastic Optimization. Kluwer Academic Publishers (2004)

    Google Scholar 

  21. Widmer, G.: Tracking context changes through meta-learning. Mach. Learn. 27(3), 259–286 (1997)

    Article  Google Scholar 

  22. Yazidi, A., Granmo, O.C., Oommen, B.J.: An adaptive approach to learning the preferences of users in a social network using weak estimators. Unabridged version of this paper (submitted for publication)

    Google Scholar 

  23. Yu, Z., Zhou, X., Zhang, D., Chin, C.Y., Wang, X., Men, J.: Supporting context-aware media recommendations for smart phones. IEEE Pervasive Computing 5, 68–75 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yazidi, A., Granmo, OC., Oommen, B.J. (2011). Tracking the Preferences of Users Using Weak Estimators. In: Wang, D., Reynolds, M. (eds) AI 2011: Advances in Artificial Intelligence. AI 2011. Lecture Notes in Computer Science(), vol 7106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25832-9_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25832-9_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25831-2

  • Online ISBN: 978-3-642-25832-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics