Abstract
Appearing as an important task in computer vision, pedestrian detection has been widely investigated in the recent years. To design a robust detector, we propose a feature descriptor called Local Response Context (LRC). This descriptor captures discriminative information regarding the surrounding of the person’s location by sampling the response map obtained by a generic sliding window detector. A partial least squares regression model using LRC descriptors is learned and employed as a second classification stage (after the execution of the generic detector to obtain the response map). Experiments based on the ETHZ pedestrian dataset show that the proposed approach improves significantly the results achieved by the generic detector alone and is comparable to the state-of-the-art methods.
Chapter PDF
Similar content being viewed by others
References
Begard, J., Allezard, N., Sayd, P.: Real-time human detection in urban scenes: Local descriptors and classifiers selection with adaboost-like algorithms. In: CVPR Workshops (2008)
Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR (2005)
Ess, A., Leibe, B., Gool, L.V.: Depth and Appearance for Mobile Scene Analysis. In: ICCV (2007)
Ess, A., Leibe, B., Schindler, K., van Gool, L.: A Mobile Vision System for Robust Multi-Person Tracking. In: CVPR (2008)
Ess, A., Leibe, B., Schindler, K., Gool, L.V.: Moving Obstacle Detection in Highly Dynamic Scenes. In: ICRA (2009)
Gualdi, G., Prati, A., Cucchiara, R.: Contextual Information and Covariance Descriptors for People Surveillance: An Application for Safety of Construction Workers. EURASIP Journal on Image and Video Processing (2011)
Lin, Z., Davis, L.S.: A pose-invariant descriptor for human detection and segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 423–436. Springer, Heidelberg (2008)
Maji, S., Berg, A., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: CVPR (2008)
Morency, L.P.: Co-occurrence graphs: contextual representation for head gesture recognition during multi-party interactions. In: WUCVP (2009)
Mu, Y., Yan, S., Liu, Y., Huang, T., Zhou, B.: Discriminative local binary patterns for human detection in personal album. In: CVPR (2008)
Schwartz, W.R., Kembhavi, A., Harwood, D., Davis, L.S.: Human Detection Using Partial Least Squares Analysis. In: ICCV (2009)
Schwartz, W., Guo, H., Davis, L.: A Robust and Scalable Approach to Face Identification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 476–489. Springer, Heidelberg (2010)
Shet, V., Neuman, J., Ramesh, V., Davis, L.: Bilattice-based logical reasoning for human detection. In: CVPR (2007)
Tran, D., Forsyth, D.: Configuration estimates improve pedestrian finding. In: NIPS (2007)
Tuzel, O., Porikli, F., Meer, P.: Human Detection via Classification on Riemannian Manifolds. In: CVPR (2007)
Wold, H.: Partial least squares. In: Kotz, S., Johnson, N. (eds.) Encyclopedia of Statistical Sciences, vol. 6, pp. 581–591. Wiley, New York (1985)
Wu, B., Nevatia, R.: Optimizing discrimination-efficiency tradeoff in integrating heterogeneous local features for object detection. In: CVPR (2008)
Wu, C., Aghajan, H.: Using context with statistical relational models: object recognition from observing user activity in home environment. In: WUCVP (2009)
Zhang, W., Zelinsky, G., Samaras, D.: Real-time accurate object detection using multiple resolutions. In: ICCV (2007)
Zhu, Q., Yeh, M.C., Cheng, K.T., Avidan, S.: Fast human detection using a cascade of histograms of oriented gradients. In: CVPR (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schwartz, W.R., Davis, L.S., Pedrini, H. (2011). Local Response Context Applied to Pedestrian Detection. In: San Martin, C., Kim, SW. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2011. Lecture Notes in Computer Science, vol 7042. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25085-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-25085-9_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25084-2
Online ISBN: 978-3-642-25085-9
eBook Packages: Computer ScienceComputer Science (R0)