iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-24983-9_10
Generation of Polyiamonds for p6 Tiling by the Reverse Search | SpringerLink
Skip to main content

Generation of Polyiamonds for p6 Tiling by the Reverse Search

  • Conference paper
Computational Geometry, Graphs and Applications (CGGA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7033))

Abstract

Polyiamonds are the two dimensional shapes made by connecting n unit triangles, joined along their edges. In this paper, we propose algorithms to generate polyiamonds for p6 tiling, i.e., those covering the plane by 6-fold rotations around two rotation centers (60 degrees rotations around the origin and 120 degrees rotations around the terminus). Our algorithm is based on the techniques of the reverse search: (1) No trial and error, since we design rules to generate the next. (2) No need to store already generated polyiamonds. According to these good properties and the proposed rule specific to p6 tiling, we have succeeded to generate 137,535 polyiamonds for p6 tiling up to n = 25, which include 2,246 polyiamonds up to n = 16 obtained by the conventional method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avis, D., Fukuda, K.: Reverse Search for Enumeration. Discrete Appl. Math. 65, 21–46 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fukuda, H., Mutoh, N., Nakamura, G., Schattschneider, D.: A Method to Generate Polyominoes and Polyiamonds for Tilings with Rotational Symmetry. Graphs and Combinatrics 23, 259–267 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fukuda, H., Mutoh, N., Nakamura, G., Schattschneider, D.: Enumeration of Polyominoes, Polyiamonds and Polyhexes for Isohedral Tilings with Rotational Symmetry. In: Ito, H., Kano, M., Katoh, N., Uno, Y. (eds.) KyotoCGGT 2007. LNCS, vol. 4535, pp. 68–78. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Gürçay, H.: Introducing Iso-Tailer 3D: A 3D Tiling Visualizer. Hacettepe Journal of Mathematics and Statistics 37, 107–114 (2008)

    MATH  Google Scholar 

  5. Horiyama, T., Samejima, M.: Enumeration of Polyominoes for p4 Tiling. In: Proc. of the 21st Canadian Conference on Computational Geometry, pp. 29–32 (2009)

    Google Scholar 

  6. Kaplan, C.S., Salesin, D.H.: Escherization. In: Proc. of SIGGRAPH, pp. 499–510 (2000)

    Google Scholar 

  7. Kaplan, C.S., Salesin, D.H.: Dihedral Escherization. In: Proc. of Graphics Interface, pp. 255–262. Canadian Human-Computer Communications Society (2004)

    Google Scholar 

  8. Katto, M., Yan, H., Kondo, S., Mitsuhashi, T., Kawanishi, T.: A Study of the Repetitive Pattern of Old Fabrics in Shoso-In —Analysis and Creation of the Pattern Formation Through the Mathematical Group Theory. In: Proc. of the 48th Annual Conference, pp. 396–397. Japanese Society for the Science of Design (2001)

    Google Scholar 

  9. Knuth, D.E.: The Art of Computer Programming. fascicle 1: Bitwise Tricks & Techniques; Binary Decision Diagrams, vol. 4. Addison-Wesley (2009)

    Google Scholar 

  10. Nakano, S., Uno, T.: Constant Time Generation of Trees with Specified Diameter. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 33–45. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Redelmeier, D.H.: Counting Polyominoes: Yet Another Attack. Discrete Mathematics 36/2, 191–203 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schattschneider, D.: The Plane Symmetry Groups: Their Recognition and Notation. American Mathematical Monthly 85/6, 439–450 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yoshida, M.: Jink\(\bar{\textrm{o}}\)ki (1641) (First edition published in 1627)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horiyama, T., Yamane, S. (2011). Generation of Polyiamonds for p6 Tiling by the Reverse Search. In: Akiyama, J., Bo, J., Kano, M., Tan, X. (eds) Computational Geometry, Graphs and Applications. CGGA 2010. Lecture Notes in Computer Science, vol 7033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24983-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24983-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24982-2

  • Online ISBN: 978-3-642-24983-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics