iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-22144-6_130
Regular Monoterpenes and Sesquiterpenes (Essential Oils) | SpringerLink
Skip to main content

Regular Monoterpenes and Sesquiterpenes (Essential Oils)

  • Reference work entry
  • First Online:
Natural Products

Abstract

Monoterpenes resulting from the combination of two and sesquiterpenes from three branched, unsaturated C5 units (isoprene) represent a large class of natural products with a wide range of biological activities. They include unsaturated hydrocarbons and their oxidation products as alcohol, aldehydes, ketones, and rarely ethers. Volatile compounds are constituents of essential oils that are accumulated by numerous plants in special structures in the tissue. Besides the conspicuous aromatic properties, a wide range of biological activities has been documented allowing a wide field of applications. In an ecological context, mono- and sesquiterpenes play an important role in the relations between organisms, for example, as attractants of pollinators or deterrents of herbivores. On a large-scale, monoterpene emissions from vegetation in nature can have ecosystem-wide influences. The further investigation and documentation of this high biodiversity and its sustainable use remains a promising task. This requires the further development of analytical and production techniques and the exact definition and characterization of the plant sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bowsher C, Steer M, Tobin A (2008) Plant biochemistry. Garland Science, New York

    Google Scholar 

  2. Dev S, Narula APS, Yadav JS (1982) CRC handbook of terpenoids. CRC Press, Boca Raton

    Google Scholar 

  3. Fenaroli G (1995) Fenaroli´s handbook of flavor ingredients, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  4. Berger RG (2007) Flavours and fragrances. Chemistry, bioprocessing and sustainability. Springer, Berlin

    Book  Google Scholar 

  5. Baser KHC, Buchbauer G (2010) Handbook of essential oils. Science, technology, and applications. CRC Press, Boca Raton

    Google Scholar 

  6. Kilic A, Kollmannsberger H, Nitz S (2005) Glycosidically bound volatiles and flavour precursors in Laurus nobilis L. J Agric Food Chem 53:2231–2235

    Article  CAS  Google Scholar 

  7. Mastelic J, Milos M, Kustrak D, Radonic A (2000) Essential oil and glycosidically bound volatile compounds from the needles of common juniper (Juniperus communis L.). Croat Chem Acta 73:585–593

    CAS  Google Scholar 

  8. Miyazawa M, Kawauchi Y, Matsuda N (2010) Character impact odorants from wild mushroom (Lactarius hatsudake) used in Japanese traditional food. Flavour Fragr J 25:197–201

    Article  CAS  Google Scholar 

  9. Teuscher E, Lindequist U (2010) Biogene Gifte. Biologie – Chemie – Pharmakologie – Toxikologie, 3rd edn. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  10. Bhat SV, Nagasampagi BA, Sivakumar M (2005) Chemistry of natural products. Springer/Narosa, Berlin/New Dehli

    Google Scholar 

  11. Yassaa N, Peeken I, Zöllner E, Bluhm K, Arnold S, Spracklen D, Williams D (2008) Evidence for marine production of monoterpenes. Environ Chem 5:391–401. doi:10.1071/EN08047

    Article  CAS  Google Scholar 

  12. Asakawa Y (2011) Bryophytes: chemical diversity, synthesis and biotechnology. A review. Flavour Fragr J 26:318–320

    CAS  Google Scholar 

  13. Adio AM (2009) Germacrenes A-E and related compounds: thermal, photochemical and acid induced transannular cyclizations. Tetrahedron 65:1533–1552

    Article  CAS  Google Scholar 

  14. Li L, Zhao J (2009) Determination of the volatile composition of Rhodobryum giganteum (Schwaegr.) Par. (Bryaceae) using solid phase microextraction and gas chromatography/mass spectrometry (GC/MS). Molecules 14:2195–2201. doi:10.3390/molecules14062195

    Article  CAS  Google Scholar 

  15. Üçüncü O, Cansu TB, Özdemir T, Alpay Karaoğlu Ş, Yayli N (2010) Chemical composition and antimicrobial activity of the essential oils of mosses (Tortula muralis Hedw., Homalothecium lutescens (Hedw.) H. Rob., Hypnum cupressiforme Hedw. and Pohlia nutans (Hedw.) Lindb.) from Turkey. Turk J Chem 34:825–834

    Google Scholar 

  16. Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr J 23:213–226

    Article  CAS  Google Scholar 

  17. Chizzola R (2007) Composition of the essential oil from Laser trilobum grown in the wild in Vienna (Austria). Chem Nat Compd 43:484–486

    Article  CAS  Google Scholar 

  18. Özcan MM, Chalchat JC, Arslan D, Ateş A, Ünver A (2006) Comparative essential oil composition and antifungal effect of bitter fennel (Foeniculum vulgare ssp. piperitum) fruits obtained during different vegetation. J Med Food 9:552–561

    Article  Google Scholar 

  19. Johnson CB, Kazantzis A, Skoula M, Mitteregger U, Novak J (2004) Seasonal, populational and ontogenic variation in the volatile oil content and composition of individuals of Origanum vulgare ssp. hirtum, assessed by GC headspace analysis and by SPME sampling of individual oil glands. Phytochem Anal 15:286–292

    Article  CAS  Google Scholar 

  20. Thompson JD, Chalchat JC, Michet A, Linhart YB, Ehlers B (2003) Qualitative and quantitative variation in monoterpene co-occurrence and composition in the essential oil if Thymus vulgaris chemotypes. J Chem Ecol 29:859–880

    Article  CAS  Google Scholar 

  21. Chizzola R, Bein-Lobmaier B, Franz C (2005) Variabilität im ätherischen Öl von südfranzösischen und spanischen Wildpopulationen des Thymians (Thymus vulgaris L.) und daraus erstellten Feldkulturen. Z. Arznei- & Gewürzpfl 10:82–90

    Google Scholar 

  22. Chen D, Yu S, van Ofwegen L, Proksch P, Lin W (2012) Anthogorgienes A-O, new guaiazulene-derived terpenoids from a chinese gorgonian Anthogorgia species, and their antifouling and antibiotic activities. J Agric Food Chem 60:112–123. doi:/10.1021/jf2040862

    Article  CAS  Google Scholar 

  23. Rapic V (2002) A guide to IUPAC nomenclature of organic compounds. Academia, Praha

    Google Scholar 

  24. Schultze W, König WA, Hilkert A, Richter R (1995) Melissenöle. Untersuchungen zur Echtheit mittels enantioselektiver Gaschromatographie und Isotopenverhältnis-Massenspektrometrie. Dt Apothztg 135:557–577

    Google Scholar 

  25. Laska M, Teubner P (1999) Olfactory discrimination ability of human subjects for ten pairs of enationmers. Chem Senses 24:161–170

    Article  CAS  Google Scholar 

  26. Foudil-Cherif Y, Yassaa N (2011) Chiral characterization of monoterpenes present in the volatile fraction of Myrtus communis L. growing in Algeria. 2011 International conference on biology. Environ Chem, IPCBEE 24:362–366

    Google Scholar 

  27. Harborne JB, Baxter H (eds) (1993) Phytochemical dictionary. A Handbook of bioactive compounds from plants. Taylor & Francis, London

    Google Scholar 

  28. Joshi RK, Badakar V, Kholkute SD (2011) Carvacrol rich essential oils of Coleus aromaticus (Benth.) from Western Ghats region of North West Karnataka, India. Adv Environ Biol 5:1307–1310

    CAS  Google Scholar 

  29. Essien EE, Aboaba SO, Ogunwande IA (2011) Constituents and antimicrobial properties of the leaf essential oil of Gossypium barbadense (Linn.). J Med Plants Res 5:702–705

    CAS  Google Scholar 

  30. Salamon I, Ghanavati M, Khazaei H (2010) Chamomile biodiversity and essential oil qualitative-quantitative characteristics in Egyptian production and Iranian landraces. Emir J Food Agric 22:59–64

    Google Scholar 

  31. Vila R, Santan AI, Pérez-Rosés R, Valderrama A, Castelli MV, Mendonca S, Zacchino S, Gupta MP, Caňigeral S (2010) Composition and biological activity of the essential oil from leaves of Plinia cerrocampanensis, a new source of α-bisabolol. Bioresour Technol 101:2510–2514

    Article  CAS  Google Scholar 

  32. Popović V, Petrović S, Pavlović M, Milenković M, Couladis M, Tzakou O, Duraki Š, Niketić M (2010) Essential oil from the underground parts of Laserpitium zernyi: potential source of α-bisabolol and its antimicrobial activity. Nat Prod Commun 5:307–310

    Google Scholar 

  33. Dashtianeh M, Fatemi S, Vatanara A, Sefidkon F, Habibzadeh M (2012) Comparative extraction of volatile oil components from Pimpinella affinis ledeb using supercritical CO2 and steam distillation. Int Res J Pharm Pharmacol 2:64–70

    Google Scholar 

  34. Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, Xie XQ, Altmann KH, Karsak M, Zimmer A (2008) Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci 105:9099–9104

    Article  CAS  Google Scholar 

  35. Agrawal G, Pant AK (2010) Volatile constituents of Trichilia connaroides (Wight and Arn.) roots. Asian J Tradit Med 5:199–202

    Google Scholar 

  36. BenMazoug HN, Romdhane M, Lebrihi A, Mathieu F, Coudrec F, Abderraba M, Khouja ML, Bouajila J (2011) Eucalyptus oleosa essential oils: chemical composition and antimicrobial and antioxidant activities of the oils from different plant parts (stems, leaves, flowers and fruits). Molecules 16:1695–1709. doi:10.3390/molecules16021695

    Article  Google Scholar 

  37. De Rovira D Sr (2008) Dictionary of flavors, 2nd edn. Wiley-Blackwell, Ames, Iowa, USA

    Google Scholar 

  38. Kaiser R (2006) Meaningful scents around the world. Olfactory, chemical, biological, and cultural considerations. Wiley-VCH, Zürich, Switzerland

    Google Scholar 

  39. Pineau B, Barbe JC, Van Leeuwen C, Dubourdieu D (2007) Which impact for β-damascenone on red wines aroma? J Agric Food Chem 55:4103–4108

    Article  CAS  Google Scholar 

  40. Sköld M, Karlberg AT, Matura M, Börje A (2006) The fragrance chemical beta-caryophyllene-air oxidation and skin sensitization. Food Chem Toxicol 44:538–545

    Article  Google Scholar 

  41. Fischer N, Nitz S, Drawert F (1988) Original composition of marjoram flavor and its changes during processing. J Agric Food Chem 36:996–1003

    Article  CAS  Google Scholar 

  42. Belitz HD, Grosch W, Schieberle P (2009) Food chemistry. Springer, Berlin

    Google Scholar 

  43. Samuelson G, Bohlin L (2009) Drugs of natural origin. A treatise of pharmacognosy, 6th edn. Swedish Pharmaceutical Press, Stockholm

    Google Scholar 

  44. Dewick PM (2009) Medicinal natural products: a biosynthetic approach, 3rd edn. Wiley, New York

    Book  Google Scholar 

  45. Dubey VS, Bhalla R, Luthra R (2003) An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J Biosci 28:637–646

    Article  CAS  Google Scholar 

  46. Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637

    Article  CAS  Google Scholar 

  47. Bruneton J (1999) Pharmacognosy phytochemistry medicinal plants, 2nd edn. Lavoisier Publishing, Paris

    Google Scholar 

  48. Lis-Balchin M (2010) Aromatherapy with essential oils. In: Baser KHC, Buchbauer G (eds) Handbook of essential oils. science, technology, and applications. CRC Press, Boca Raton

    Google Scholar 

  49. Heuberger E (2010) Effects of essential oils in the central nervous system. In: Baser KHC, Buchbauer G (eds) Handbook of essential oils. science, technology, and applications. CRC Press, Boca Raton

    Google Scholar 

  50. Linck VM, da Silva AL, Figueiro M, Caramao EB, Moreno PRH, Elisabetsky E (2010) Effects of inhaled linalool in anxiety, social interaction and aggressive behaviour in mice. Phytomedicine 17:679–683. doi:10.1016/j.phymed.2009.10.002

    Article  CAS  Google Scholar 

  51. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol 94:223–253

    Article  CAS  Google Scholar 

  52. Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res 21:308–323

    Article  CAS  Google Scholar 

  53. Adorjan B, Buchbauer G (2010) Biological properties of essential oils: an updated review. Flavour Fragr J 25:407–426

    Article  CAS  Google Scholar 

  54. Blaschek W, Ebel S, Hackenthal E, Holzgrabe U, Keller K, Reichling J, Schulz V (2007) Hagers Enzykopädie der Arzneistoffe und Drogen, 6th edn. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  55. Jirovetz L, Buchbauer G, Ngassoum MB, Geissler M (2002) Aroma compound analysis of Piper nigrum and Piper guineense essential oils from Cameroon using solid-phase microextraction – gas chromatography, solid-phase microextraction – gas chromatography – mass spectrometry and olfactometry. J Chromatogr A 976:265–275

    Article  CAS  Google Scholar 

  56. Qiao Y, Xie BJ, Zhang Y, Zhang Y, Fan G, Yao XL, Pan SY (2008) Characterization of aroma active compounds in fruit juice and peel oil of Jinchen sweet orange fruit (Citrus sinensis (L.)Osbeck) by GC-MS and GC-O. Molecules 13:1333–1344. doi:10.3390/molecules13061333

    Article  Google Scholar 

  57. Hu L, Wang Y, Du M, Zhang J (2011) Characterization of the volatiles and active components in ethanol extracts of fruits of Litsea cubeba (Lour.) by gas chromatography – mass spectrometry (GC-MS) and gas chromatography – olfactometry (GC-O). J Med Plants Res 5:3298–3303

    CAS  Google Scholar 

  58. Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    Article  CAS  Google Scholar 

  59. Lang G, Buchbauer G (2012) A review on recent research results (2008–2010) on essential oils as antimicrobials and antifungals. Flavour Fragr J 27:13–39

    Article  CAS  Google Scholar 

  60. Schmidt E, Bail S, Friedl SM, Jirovetz L, Buchbauer G, Wanner J, Denkova Z, Slavchev A, Stoyanova A, Geissler M (2010) Antimicrobial activities of single aroma compounds. Nat Prod Commun 5:1365–1368

    CAS  Google Scholar 

  61. Koroch AR, Juliani HR, Zygaldo JA (2007) Bioactivity of essential oils and their components. In: Berger RG (ed) Flavours and fragrances. Chemistry, bioprocessing and sustainability. Springer, Berlin

    Google Scholar 

  62. Zore GB, Thakre AD, Jadhav S, Karuppayil SM (2011) Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine 18:1181–1190. doi:10.1016/j.phymed.2011.03.008

    Article  CAS  Google Scholar 

  63. Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Rezaee MB, Jaimand K, Alinezhad S, Saberi R, Yoshinari T (2009) Chemical composition and antiaflatoxigenic activity of Carum carvi L., Thymus vulgaris and Citrus aurantifolia essential oils. Food Control 20:1018–1024

    Article  CAS  Google Scholar 

  64. Ruberto G, Baratta MT (2000) Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem 69:167–174

    Article  CAS  Google Scholar 

  65. Dorman HJD, Figueiredo AC, Borroso JG, Deans SG (2000) In vitro evaluation of antioxidant activity of essential oils and their components. Flavour Fragr J 15:12–16

    Article  CAS  Google Scholar 

  66. Misharina TA, Terenin MB, Krikunova NI (2009) Antioxidant properties of essential oils. Appl Biochem Microbiol 45:642–647. doi:10.1134/S000368380906012X

    Article  CAS  Google Scholar 

  67. Trongtokit Y, Rongsriyam Y, Komalamisra N, Apiwathnasorn C (2005) Comparative repellency of 38 essential oils against mosquito bites. Phytother Res 19:303–309

    Article  CAS  Google Scholar 

  68. Franz C, Baser KHC, Windisch W (2010) Essential oils and aromatic plants in animal feeding – a European perspective. A review. Flavour Fragr J 25:327–340

    Article  CAS  Google Scholar 

  69. Evans JD, Martin SA (2000) Effects of thymol on ruminal microorganisms. Curr Microbiol 41:336–340

    Article  CAS  Google Scholar 

  70. Broudiscou LP, Papon Y, Brodiscou AF (2000) Effects of dry plant extracts on fermentation and methanogenesis in continuous culture of rumen microbes. Anim Feed Sci Technol 87:263–277

    Article  CAS  Google Scholar 

  71. EMEA – European Medicines Agency (2005) Public statement on the use of herbal medicinal products containing pulegone and menthofuran. Doc Ref: EMEA/HMPC/138386/2005

    Google Scholar 

  72. Lachenmeier DW, Nathan-Maister D, Breaux TA, Sohnius E, Schoeberl K, Kuballa T (2008) Chemical composition of vintage preban absinthe with special reference to thujone, fenchone, pinocamphone, methanol, copper, and antimony concentrations. J Agric Food Chem 56:3073–3081

    Article  CAS  Google Scholar 

  73. Lachenmeier DW (2010) Wormwood (Artemisia absinthium L.) – a curious plant with both neurotoxic and neuroprotective properties? J Ethnopharmacol 131:224–227

    Article  Google Scholar 

  74. EMEA – European Medicines Agency (2009) Assessment report on Artemisia absinthium L. Herba. Doc. Ref.: EMEA/HMPC/234444/2008

    Google Scholar 

  75. Radulović NS, Dekić MS, Ranđelović PJ, Stojanovic NM, Zarubica AR, Stojanović-Radić ZZ (2012) Toxic essential oils: anxiolytic, antinociceptive and antimicrobial properties of the yarrow Achillea umbellata Sibth. Et Sm (Asteraceae) volatiles. Food Chem Toxicol 50:2013–2026. doi:10.1016/j.fct.2012.03.047

    Google Scholar 

  76. Schnuch A, Uter W, Geier J, Lessmann H, Frosch PJ (2007) Sensitization to 26 fragrances to be labelled according to current European regulation. Contact Dermatitis 57:1–10

    Article  CAS  Google Scholar 

  77. Belsito D, Bicker D, Bruze M, Calow P, Greim H, Hanifin JM, Rogers AE, Saurat JH, Sipes IG, Tagami H (2008) A toxicologic and dermatologic assessment of cyclic and non-cyclic terpene alcohols when used as fragrance ingredients. Food Chem Toxicol 46:S1–S71. doi:10.1016/j.fct.2008.06.085

    Google Scholar 

  78. Sagunski H, Heinzow B (2003) Richtwerte für die Innenraumluft: bizyklische Terpene (Leitsubstanz α-Pinen). Bundesgesundheitsbl 46:346–352. doi:10.1007/s00103-003-0584-7

    Article  Google Scholar 

  79. Anonymus (2010) Richtwerte for monocyclische Monoterpene (Leitsubstynz d-Limonen) in der Innenraumluft. Bundesgesundheitsbl 53:1206–1245. doi:10.1007/s00103-010-1155-3

    Article  Google Scholar 

  80. Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  81. Knudsen JT, Eriksson R, Gershenzon J (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  82. Pare W, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331

    Article  CAS  Google Scholar 

  83. Mazid M, Khan TA, Mohammad F (2011) Role of secondary metabolites in defense mechanisms of plants. Biology and Medicine 3: Special Issue 232–249

    Google Scholar 

  84. Zebelo SA, Bertea CM, Bossi S, Occhipinti A, Gnavi G, Maffei ME (2011) Chrysolina herbacea modulates terpenoid biosynthesis of Mentha aquatica L. PLoS One 6:e17195. doi:10.1371/journal.pone.0017195

    Article  CAS  Google Scholar 

  85. Opitz S, Kunert G, Gershenzon J (2008) Increased terpenoid accumulation in cotton (Gossypium hirsutum) foliage is a general wound response. J Chem Ecol 34:508–522. doi:10.1007/s10886-008-9453-z

    Article  CAS  Google Scholar 

  86. Niu H, Zhao L, Lu M, Zhang S, Sun J (2012) The ratio and concentration of two monoterpenes mediate fecundity of the pinewood nematode and growth of its associated fungi. PLoS One 7:e31716. doi:10.1371/journal.pone.0031716

    Article  CAS  Google Scholar 

  87. Chen F, Al-Ahmad H, Joyce B, Zhao N, Köllner TG, Degenhardt J, Stewart CN Jr (2009) Within-plant distribution and emission of sesquiterpenes from Copaifera officinalis. Plant Physiol Biochem 47:1017–1023

    Article  CAS  Google Scholar 

  88. Zwenger S, Basu C (2008) Plant terpenoids: applications and future potentials. Biotechnol Mol Biol Rev 3:1–7

    Google Scholar 

  89. Räisänen T, Ryyppö A, Kellomäki S (2009) Monoterpene emission of a boreal pine (Pinus sylvestris L.) forest. Agric For Meteorol 149:808–819

    Article  Google Scholar 

  90. Spracklen DV, Bonn B, Carslaw KS (2008) Boreal forests, aerosols and the impacts on clouds and climate. Philos Trans R Soc A 1–14. doi:10.1098/rsta.2008.0201

    Google Scholar 

  91. Noma Y, Asakawa Y (2010) Biotransformation of monoterpenoids by microorganisms, insects and mammals. In: Baser KHC, Buchbauer G (eds) Handbook of essential oils. Science, technology, and applications. CRC Press, Boca Raton

    Google Scholar 

  92. Asakawa Y, Noma Y (2010) Biotransformation of sesquiterpenoids, ionones, damascones, adamantanes, and aromatic compounds by green algae, fungi, and mammals. In: Baser KHC, Buchbauer G (eds) Handbook of essential oils. Science, technology, and applications. CRC Press, Boca Raton

    Google Scholar 

  93. Duetz WA, Bouwmeester H, van Beilen JB (2003) Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl Microbiol Biotechnol 61:269–277. doi:10.1007/s00253-003-1221-y

    CAS  Google Scholar 

  94. Schrader J (2007) Microbial flavour production. In: Berger RG (ed) Flavours and fragrances. Chemistry, bioprocessing and sustainability. Springer, Berlin

    Google Scholar 

  95. Schrader J (2010) Mikrobielle oxidation von Terpenen. BioSpektrum 16:555–557

    CAS  Google Scholar 

  96. Aharoni A, Jongsma MA, Kim TY, Ro MB, Giri AP, Verstappen WA, Schwab W, Bouwmeester H (2006) Metabolic engineering of terpene biosynthesis in plants. Phytochem Rev. doi:10.1007/s11101-005-3747-3

    Google Scholar 

  97. Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatiles. Curr Opin Biotechnol 19:1–9. doi:10.1016/j.copbio.2008.02.011

    Article  Google Scholar 

  98. Misawa N (2011) Pathway engineering for functional isoprenoids. Curr Opin Biotechol 22:1–7. doi:10.1016/j.copbio.2011.01.002

    Article  Google Scholar 

  99. Peralta-Yahya PP (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483. doi:10.1038//ncomms1494

    Article  Google Scholar 

  100. Ohara K, Matsunaga E, Nanto K, Yamamoto K, Sasaki K, Ebinuma H, Yazaki K (2010) monoterpene engineering in a woody plant Eucalyptus camaldulensis using a limonene synthase cDNA. Plant Biotech J 8:28–37. doi:10.1111/j.1467-7652.2009.00461.x

    Article  CAS  Google Scholar 

  101. Franz C (2010) Essential oil research: past, present and future. Flavour Fragr J 25:112–113

    Article  Google Scholar 

  102. European Herb Growers Association (EUROPAM) (2010) http://www.europam.net. Accessed 03 Sep 2012

  103. Van Soest JJG (2007) Encapsulation of fragrances and flavours: a way to control odour. In: Berger RG (ed) Flavours and fragrances. Chemistry, bioprocessing and sustainability. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remigius Chizzola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Chizzola, R. (2013). Regular Monoterpenes and Sesquiterpenes (Essential Oils). In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_130

Download citation

Publish with us

Policies and ethics