iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-21916-0_33
A Generic Approach for Modeling and Mining n-ary Patterns | SpringerLink
Skip to main content

A Generic Approach for Modeling and Mining n-ary Patterns

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6804))

Included in the following conference series:

  • 3729 Accesses

Abstract

The aim of this paper is to model and mine patterns combining several local patterns (n-ary patterns). First, the user expresses his/her query under constraints involving n-ary patterns. Second, a constraint solver generates the correct and complete set of solutions. This approach enables to model in a flexible way sets of constraints combining several local patterns and it leads to discover patterns of higher level. Experiments show the feasibility and the interest of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R., Trasarti, R.: A constraint-based querying system for exploratory pattern discovery. Inf. Syst. 34(1), 3–27 (2009)

    Article  Google Scholar 

  2. De Raedt, L., Guns, T., Nijssen, S.: Constraint Programming for Itemset Mining. In: ACM SIGKDD Int. Conf. KDD 2008, Las Vegas, Nevada, USA (2008)

    Google Scholar 

  3. De Raedt, L., Zimmermann, A.: Constraint-based pattern set mining. In: 7th SIAM Int. Conf. on Data Mining. SIAM, Philadelphia (2007)

    Google Scholar 

  4. Khiari, M., Boizumault, P., Crémilleux, B.: Local constraint-based mining and set constraint programming for pattern discovery. In: From Local Patterns to Global Models (LeGo 2009), ECML/PKDD 2009 Workshop, Bled, Slovenia, pp. 61–76 (2009)

    Google Scholar 

  5. Khiari, M., Boizumault, P., Crémilleux, B.: Constraint programming for mining n-ary patterns. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 552–567. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Knobbe, A., Ho, E.: Pattern teams. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 577–584. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Ng, R.T., Lakshmanan, V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained associations rules. In: Proceedings of ACM SIGMOD 1998, pp. 13–24. ACM Press, New York (1998)

    Chapter  Google Scholar 

  8. Padmanabhan, B., Tuzhilin, A.: A belief-driven method for discovering unexpected patterns. In: KDD, pp. 94–100 (1998)

    Google Scholar 

  9. Suzuki, E.: Undirected Discovery of Interesting Exception Rules. Int. Journal of Pattern Recognition and Artificial Intelligence 16(8), 1065–1086 (2002)

    Article  Google Scholar 

  10. Szathmary, L., Valtchev, P., Napoli, A.: Generating Rare Association Rules Using the Minimal Rare Itemsets Family. Int. J. of Software and Informatics 4(3), 219–238 (2010)

    Google Scholar 

  11. Yin, X., Han, J.: CPAR: classification based on predictive association rules. In: proceedings of the 2003 SIAM Int. Conf. on Data Mining, SDM 2003 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khiari, M., Boizumault, P., Crémilleux, B. (2011). A Generic Approach for Modeling and Mining n-ary Patterns. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21916-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21915-3

  • Online ISBN: 978-3-642-21916-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics