Abstract
The aim of this paper is to model and mine patterns combining several local patterns (n-ary patterns). First, the user expresses his/her query under constraints involving n-ary patterns. Second, a constraint solver generates the correct and complete set of solutions. This approach enables to model in a flexible way sets of constraints combining several local patterns and it leads to discover patterns of higher level. Experiments show the feasibility and the interest of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R., Trasarti, R.: A constraint-based querying system for exploratory pattern discovery. Inf. Syst. 34(1), 3–27 (2009)
De Raedt, L., Guns, T., Nijssen, S.: Constraint Programming for Itemset Mining. In: ACM SIGKDD Int. Conf. KDD 2008, Las Vegas, Nevada, USA (2008)
De Raedt, L., Zimmermann, A.: Constraint-based pattern set mining. In: 7th SIAM Int. Conf. on Data Mining. SIAM, Philadelphia (2007)
Khiari, M., Boizumault, P., Crémilleux, B.: Local constraint-based mining and set constraint programming for pattern discovery. In: From Local Patterns to Global Models (LeGo 2009), ECML/PKDD 2009 Workshop, Bled, Slovenia, pp. 61–76 (2009)
Khiari, M., Boizumault, P., Crémilleux, B.: Constraint programming for mining n-ary patterns. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 552–567. Springer, Heidelberg (2010)
Knobbe, A., Ho, E.: Pattern teams. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 577–584. Springer, Heidelberg (2006)
Ng, R.T., Lakshmanan, V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained associations rules. In: Proceedings of ACM SIGMOD 1998, pp. 13–24. ACM Press, New York (1998)
Padmanabhan, B., Tuzhilin, A.: A belief-driven method for discovering unexpected patterns. In: KDD, pp. 94–100 (1998)
Suzuki, E.: Undirected Discovery of Interesting Exception Rules. Int. Journal of Pattern Recognition and Artificial Intelligence 16(8), 1065–1086 (2002)
Szathmary, L., Valtchev, P., Napoli, A.: Generating Rare Association Rules Using the Minimal Rare Itemsets Family. Int. J. of Software and Informatics 4(3), 219–238 (2010)
Yin, X., Han, J.: CPAR: classification based on predictive association rules. In: proceedings of the 2003 SIAM Int. Conf. on Data Mining, SDM 2003 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Khiari, M., Boizumault, P., Crémilleux, B. (2011). A Generic Approach for Modeling and Mining n-ary Patterns. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-21916-0_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21915-3
Online ISBN: 978-3-642-21916-0
eBook Packages: Computer ScienceComputer Science (R0)