iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-21881-1_24
On Designing of Flexible Neuro-Fuzzy Systems for Nonlinear Modelling | SpringerLink
Skip to main content

On Designing of Flexible Neuro-Fuzzy Systems for Nonlinear Modelling

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6743))

Abstract

In the paper the evolutionary strategy is used for learning of neuro-fuzzy structures of a Mamdani type applied to modelling of nonlinear systems. In the process of evolution we determine parameters of fuzzy membership functions, specific t-norm in a fuzzy inference, specific t-norm for aggregation of antecedents in each rule, and specific t-conorm describing an aggregation operator. The method is tested using well known approximation benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Casillas, J., Cordon, O., Herrera, F., Magdalena, L. (eds.): Interpretability Issues in Fuzzy Modeling. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  2. Cpałka, K.: A New Method for Design and Reduction of Neuro-Fuzzy Classification Systems. IEEE Transactions on Neural Networks 20(4), 701–714 (2009)

    Article  Google Scholar 

  3. Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. In: Nonlinear Analysis Series A: Theory, Methods & Applications, vol. 71. Elsevier, Amsterdam (2009)

    Google Scholar 

  4. Czogała, E., Łęski, J.: Fuzzy and Neuro-Fuzzy Intelligent Systems. Physica-Verlag. A Springer Company, Heidelberg, New York (2000)

    Book  MATH  Google Scholar 

  5. Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 3rd edn. IEEE Press, Piscataway (2006)

    MATH  Google Scholar 

  6. Gabryel, M., Rutkowski, L.: Evolutionary Learning of Mamdani-Type Neuro-fuzzy Systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 354–359. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  8. Kumar, M., Stoll, R., Stoll, N.: A robust design criterion for interpretable fuzzy models with uncertain data. IEEE Trans. Fuzzy Syst. 14(2), 314–328 (2006)

    Article  Google Scholar 

  9. Łęski, J.: A Fuzzy If-Then Rule-Based Nonlinear Classifier. Int. J. Appl. Math. Comput. Sci. 13(2), 215–223 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Rutkowski, L.: Computational Intelligence. Springer, Heidelberg (2007)

    Google Scholar 

  11. Rutkowski, L., Cpałka, K.: Flexible neuro-fuzzy systems. IEEE Trans. Neural Networks 14(3), 554–574 (2003)

    Article  Google Scholar 

  12. Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  13. Sugeno, M., Yasukawa, T.: A fuzzy logic based approach to qualitative modeling. IEEE Trans. on Fuzzy Systems 1, 7–31 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L. (2011). On Designing of Flexible Neuro-Fuzzy Systems for Nonlinear Modelling. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2011. Lecture Notes in Computer Science(), vol 6743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21881-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21881-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21880-4

  • Online ISBN: 978-3-642-21881-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics