iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-21458-5_29
Tractability and Approximability of Maximal Strip Recovery | SpringerLink
Skip to main content

Tractability and Approximability of Maximal Strip Recovery

  • Conference paper
Combinatorial Pattern Matching (CPM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6661))

Included in the following conference series:

Abstract

An essential task in comparative genomics is usually to decompose two or more genomes into synteny blocks, that is, segments of chromosomes with similar contents. In this paper, we study the Maximal Strip Recovery problem (MSR) [Zheng et al. 07], which aims at finding an optimal decomposition of a set of genomes into synteny blocks, amidst possible noise and ambiguities. We present a panel of new or improved FPT and approximation algorithms for the MSR problem and its variants. Our main results include the first FPT algorithm for the variant δ-gap-MSR-d, an FPT algorithm for CMSR-d and δ-gap-CMSR-d running in time O(2.360k poly(nd)), where k is the number of markers or genes considered as erroneous, and a (d + 1.5)-approximation algorithm for CMSR-d and δ-gap-CMSR-d.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bulteau, L., Fertin, G., Rusu, I.: Maximal strip recovery problem with gaps: Hardness and approximation algorithms. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 710–719. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from comparative maps. Journal of Combinatorial Optimization 18, 307–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Choi, V., Zheng, C., Zhu, Q., Sankoff, D.: Algorithms for the extraction of synteny blocks from comparative maps. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 277–288. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Halldórsson, M.M.: Approximating discrete collections via local improvements. In: Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1995), pp. 160–169 (1995)

    Google Scholar 

  5. Jiang, H., Li, Z., Lin, G., Wang, L., Zhu, B.: Exact and approximation algorithms for the complementary maximal strip recovery problem. In: Journal of Combinatorial Optimization (to appear), doi:10.1007/s10878-010-9366-y

    Google Scholar 

  6. Jiang, M.: Inapproximability of maximal strip recovery. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 616–625. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Jiang, M.: On the parameterized complexity of some optimization problems related to multiple-interval graphs. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 125–137. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Jiang, M.: Inapproximability of maximal strip recovery: II. In: Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 53–64. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Wang, L., Zhu, B.: On the tractability of maximal strip recovery. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 400–409. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from comparative maps in rearrangement analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4, 515–522 (2007)

    Article  Google Scholar 

  11. Zhu, B.: Efficient exact and approximate algorithms for the complement of maximal strip recovery. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 325–333. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bulteau, L., Fertin, G., Jiang, M., Rusu, I. (2011). Tractability and Approximability of Maximal Strip Recovery. In: Giancarlo, R., Manzini, G. (eds) Combinatorial Pattern Matching. CPM 2011. Lecture Notes in Computer Science, vol 6661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21458-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21458-5_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21457-8

  • Online ISBN: 978-3-642-21458-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics