iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-21254-3_13
Partial Derivatives of an Extended Regular Expression | SpringerLink
Skip to main content

Partial Derivatives of an Extended Regular Expression

  • Conference paper
Language and Automata Theory and Applications (LATA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6638))

Abstract

The notion of expression derivative due to Brzozowski leads to the construction of a deterministic automaton from an extended regular expression, whereas the notion of partial derivative due to Antimirov leads to the construction of a non-deterministic automaton from a simple regular expression. In this paper, we generalize Antimirov partial derivatives to regular expressions extended to complementation and intersection. For a simple regular expression with n symbols, Antimirov automaton has at most n + 1 states. As far as an extended regular expression is concerned, we show that the number of states can be exponential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antimirov, V.: Partial derivatives of regular expressions and finite automaton constructions. Theoretical Computer Science 155, 291–319 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoretical Computer Science 48(1), 117–126 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brzozowski, J.A.: Derivatives of regular expressions. Journal of the Association for Computing Machinery 11(4), 481–494 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Champarnaud, J.M., Ponty, J.L., Ziadi, D.: From regular expressions to finite automata. International Journal of Computational Mathematics 72, 415–431 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives, and finite automaton constructions. Theoretical Computer Science 239(1), 137–163 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular expressions: New results and open problems. Journal of Automata, Languages and Combinatorics 10(4), 407–437 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Gelade, W.: Succinctness of regular expressions with interleaving, intersection and counting. Theoretical Computer Science 411(31-33), 2987–2998 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular expressions. In: Albers, S., Weil, P. (eds.) STACS. Dagstuhl Seminar Proceedings, vol. 08001, pp. 325–336 (2008)

    Google Scholar 

  9. Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Surveys 16, 1–53 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kleene, S.: Representation of events in nerve nets and finite automata. Automata Studies Annual Mathematical Studies 34, 3–41 (1956)

    MathSciNet  Google Scholar 

  11. Leiss, E.: Constructing a finite automaton for a given regular expression. SIGACT News 12, 81–87 (1980)

    Article  MATH  Google Scholar 

  12. McNaughton, R.F., Yamada, H.: Regular expressions and state graphs for automata. IEEE Transactions on Electronic Computers 9, 39–57 (1960)

    Article  MATH  Google Scholar 

  13. Myhill, J.: Finite automata and the representation of events. Wright Air Development Command Technical Report 57-624, 112–137 (1957)

    Google Scholar 

  14. Nerode, A.: Linear automata transformation. In: Proceedings of AMS, vol. 9, pp. 541–544 (1958)

    Google Scholar 

  15. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Research and Development 3(2), 115–125 (1959)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caron, P., Champarnaud, JM., Mignot, L. (2011). Partial Derivatives of an Extended Regular Expression. In: Dediu, AH., Inenaga, S., Martín-Vide, C. (eds) Language and Automata Theory and Applications. LATA 2011. Lecture Notes in Computer Science, vol 6638. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21254-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21254-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21253-6

  • Online ISBN: 978-3-642-21254-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics