iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-20389-3_9
Finding Motifs in DNA Sequences Applying a Multiobjective Artificial Bee Colony (MOABC) Algorithm | SpringerLink
Skip to main content

Finding Motifs in DNA Sequences Applying a Multiobjective Artificial Bee Colony (MOABC) Algorithm

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2011)

Abstract

In this work we propose the application of a Swarm Intelligence (SI) algorithm to solve the Motif Discovery Problem (MDP), applied to the specific task of discovering novel Transcription Factor Binding Sites (TFBS) in DNA sequences. In the last years there have appeared many new evolutionary algorithms based on the collective intelligence. Finding TFBS is crucial for understanding the gene regulatory relationship but, motifs are weakly conserved, and motif discovery is an NP-hard problem. Therefore, the use of such algorithms can be a good way to obtain quality results. The chosen algorithm is the Artificial Bee Colony (ABC), it is an optimization algorithm based on the intelligent foraging behaviour of honey bee swarm. To solve the MDP we have applied multiobjective optimization and consequently, we have adapted the ABC to multiobjective problems, defining the Multiobjective Artificial Bee Colony (MOABC) algorithm. New results have been obtained, that significantly improve those published in previous researches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D’haeseleer, P.: What are DNA sequence motifs? Nature Biotechnology 24(4), 423–425 (2006)

    Article  Google Scholar 

  2. Lawrence, C.E., Reilly, A.A.: An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences. Proteins 7(1), 41–51 (1990)

    Article  Google Scholar 

  3. Hertz, G.Z., Hartzell, G.W., Stormo, G.D.: Identification of consensus patterns in unaligned DNA sequences known to be functionally related. Computer Applications in the Biosciences 6(2), 81–92 (1990)

    Google Scholar 

  4. Bailey, T.L., Elkan, C.: Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Machine Learning 21(1-2), 51–80 (1995)

    Article  Google Scholar 

  5. Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F., Wootton, J.C.: Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262(5131), 208–214 (1993)

    Article  Google Scholar 

  6. Roth, F.P., Hughes, J.D., Estep, P.W., Church, G.M.: Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole genome mRNA quantitation. Nature Biotechnology 16(10), 939–945 (1998)

    Article  Google Scholar 

  7. Pavesi, G., Mauri, G., Pesole, G.: An algorithm for finding signals of unknown length in DNA sequences. Bioinformatics 17(suppl. 1), S207–S214 (2001)

    Article  Google Scholar 

  8. Liu, F.F.M., Tsai, J.J.P., Chen, R.M., Chen, S.N., Shih, S.H.: FMGA: finding motifs by genetic algorithm. In: Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE 2004), p. 459 (2004)

    Google Scholar 

  9. Notredame, C., Higgins, D.G.: SAGA: Sequence alignment by genetic algorithm. Nucleic Acids Research 24(8), 1515–1524 (1996)

    Article  Google Scholar 

  10. Stine, M., Dasgupta, D., Mukatira, S.: Motif discovery in upstream sequences of coordinately expressed genes. In: The 2003 Congress on Evolutionary Computational (CEC 2003), vol. 3, pp. 1596–1603 (2003)

    Google Scholar 

  11. Che, D., Song, Y., Rashedd, K.: MDGA: Motif discovery using a genetic algorithm. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation (GECCO 2005), USA, pp. 447–452 (2005)

    Google Scholar 

  12. Shao, L., Chen, Y.: Bacterial Foraging Optimization Algorithm Integrating Tabu Search for Motif Discovery. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2009), pp. 415–418 (2009)

    Google Scholar 

  13. Shao, L., Chen, Y., Abraham, A.: Motif Discovery using Evolutionary Algorithms. In: International Conference of Soft Computing and Pattern Recognition (SOCPAR 2009), pp. 420–425 (2009)

    Google Scholar 

  14. Kaya, M.: MOGAMOD: Multi-objective genetic algorithm for motif discovery. Expert Systems with Applications: An International Journal 36(2), 1039–1047 (2009)

    Article  Google Scholar 

  15. Karaboga, D.: An idea based on honey bee swarm for numerical optimization, Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

    Google Scholar 

  16. Karaboga, D., Basturk, B.: A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm. Journal of Global Optimization 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Solving the Motif Discovery Problem by Using Differential Evolution with Pareto Tournaments. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC 2010), pp. 4140–4147. IEEE Computer Society, Los Alamitos (2010)

    Google Scholar 

  18. González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sónchez-Pérez, J.M.: A Multiobjective Variable Neighborhood Search for Solving the Motif Discovery Problem. In: Advances in Intelligent and Soft Computing, vol. 73, pp. 39–46. Springer, Heidelberg (2010)

    Google Scholar 

  19. Weicker, N., Szabo, G., Weicker, K., Widmayer, P.: Evolutionary Multiobjective Optimization for Base Station Transmitter Placement With Frequency Assignment. IEEE Transactions on Evolutionary Computation 7, 189–203 (2003)

    Article  Google Scholar 

  20. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  21. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. IEEE Transactions on Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  22. Wingender, E., Dietze, P., Karas, H., Knüppel, R.: TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Research 24(1), 238–241 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M. (2011). Finding Motifs in DNA Sequences Applying a Multiobjective Artificial Bee Colony (MOABC) Algorithm. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2011. Lecture Notes in Computer Science, vol 6623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20389-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20389-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20388-6

  • Online ISBN: 978-3-642-20389-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics