iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-20152-3_42
Web Search and Browse Log Mining: Challenges, Methods, and Applications | SpringerLink
Skip to main content

Web Search and Browse Log Mining: Challenges, Methods, and Applications

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6588))

Included in the following conference series:

Abstract

Huge amounts of search log data have been accumulated in various search engines. Currently, a commercial search engine receives billions of queries and collects tera-bytes of log data on any single day. Other than search log data, browse logs can be collected by client-side browser plug-ins, which record the browse information if users’ permissions are granted. Such massive amounts of search/browse log data, on the one hand, provide great opportunities to mine the wisdom of crowds and improve search results as well as online advertisement. On the other hand, designing effective and efficient methods to clean, model, and process large scale log data also presents great challenges.

In this tutorial, I will focus on mining search and browse log data for search engines. I will start with an introduction of search and browse log data and an overview of frequently-used data summarization in log mining. I will then elaborate how log mining applications enhance the five major components of a search engine, namely, query understanding, document understanding, query-document matching, user understanding, and monitoring and feedbacks. For each aspect, I will survey the major tasks, fundamental principles, and state-of-the-art methods. Finally, I will discuss the challenges and future trends of log data mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, D. (2011). Web Search and Browse Log Mining: Challenges, Methods, and Applications. In: Yu, J.X., Kim, M.H., Unland, R. (eds) Database Systems for Advanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20152-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20152-3_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20151-6

  • Online ISBN: 978-3-642-20152-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics