iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-19893-9_18
Very Large-Scale Neighborhood Search for Solving Multiobjective Combinatorial Optimization Problems | SpringerLink
Skip to main content

Very Large-Scale Neighborhood Search for Solving Multiobjective Combinatorial Optimization Problems

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6576))

Included in the following conference series:

Abstract

Very large-scale neighborhood search (VLSNS) is a technique intensively used in single-objective optimization. However, there is almost no study of VLSNS for multiobjective optimization. We show in this paper that this technique is very efficient for the resolution of multiobjective combinatorial optimization problems. Two problems are considered: the multiobjective multidimensional knapsack problem and the multiobjective set covering problem. VLSNS are proposed for these two problems and are integrated into the two-phase Pareto local search. The results obtained on biobjective instances outperform the state-of-the-art results for various indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Appl. Math. 123(1-3), 75–102 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alsheddy, A., Tsang, E.P.K.: Guided Pareto local search and its application to the 0/1 multi-objective knapsack problems. In: Proceedings of the Eighth Metaheuristic International Conference (MIC 2009), Hamburg (2009)

    Google Scholar 

  3. Alsheddy, A., Tsang, E.P.K.: Guided Pareto local search based frameworks for Pareto optimization. In: Proceedings of the WCCCI IEEE World Congress on Computational Intelligence, Barcelona (2010)

    Google Scholar 

  4. Alves, M.J., Almeida, M.: MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem. Computers & Operations Research 34, 3458–3470 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Management Science 25, 73–78 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Angel, E., Bampis, E., Gourvés, L.: A dynasearch neighborhood for the bicriteria traveling salesman problem. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 153–176. Springer, Berlin (2004)

    Chapter  Google Scholar 

  7. Barichard, V., Hao, J.K.: An empirical study of tabu search for the MOKP. In: Proceedings of the First International Workshop on Heuristics, China. Series of Information & Management Sciences, vol. 4, pp. 47–56 (2002)

    Google Scholar 

  8. Beausoleil, R.P., Baldoquin, G., Montejo, R.A.: Multi-start and path relinking methods to deal with multiobjective knapsack problems. Annals of Operations Research 157, 105–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)

    Book  MATH  Google Scholar 

  10. Czyzak, P., Jaszkiewicz, A.: Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis 7, 34–47 (1998)

    Article  MATH  Google Scholar 

  11. Gomes da Silva, C., Clímaco, J., Figueira, J.R.: Scatter search method for the bi-criteria multi-dimensional {0,1}-knapsack problem using surrogate relaxation. Journal of Mathematical Modelling and Algorithms 3(3), 183–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, New York (2001)

    MATH  Google Scholar 

  13. Ehrgott, M., Gandibleux, X.: Multiobjective combinatorial optimization. In: Ehrgott, M., Gandibleux, X. (eds.) Multiple Criteria Optimization – State of the Art Annotated Bibliographic Surveys, vol. 52, pp. 369–444. Kluwer Academic Publishers, Boston (2002)

    Chapter  Google Scholar 

  14. Gandibleux, X., Vancoppenolle, D., Tuyttens, D.: A first making use of GRASP for solving MOCO problems. In: 14th International Conference in Multiple Criteria Decision-Making, Charlottesville (1998)

    Google Scholar 

  15. Glover, F., Kochenberger, G.: Handbook of Metaheuristics. Kluwer, Boston (2003)

    Book  MATH  Google Scholar 

  16. Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. European Journal of Operational Research 130(3), 449–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ishibuchi, H., Murada, T.: A multi-objective genetic local search algorithm and its application to flow shop scheduling. IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews 28(3), 392–403 (1998)

    Article  Google Scholar 

  18. Jaszkiewicz, A.: Experiments done with the MOMHLIB: Technical report, Institute of Computing Science, Poznań University of Technology (2000), http://www-idss.cs.put.poznan.pl/jaszkiewicz/momhlib/

  19. Jaszkiewicz, A.: On the Performance of Multiple-Objective Genetic Local Search on the 0/1 Knapsack Problem—A Comparative Experiment. Technical Report RA-002/2000, Institute of Computing Science, Poznań University of Technology, Poznań, Poland (July 2000)

    Google Scholar 

  20. Jaszkiewicz, A.: A comparative study of multiple-objective metaheuristics on the bi-objective set covering problem and the Pareto memetic algorithm. Technical Report RA-003/01, Institute of Computing Science, Poznań University of Technology, Poznań, Poland (2001)

    Google Scholar 

  21. Jaszkiewicz, A.: On the Performance of Multiple-Objective Genetic Local Search on the 0/1 Knapsack Problem—A Comparative Experiment. IEEE Transactions on Evolutionary Computation 6(4), 402–412 (2002)

    Article  Google Scholar 

  22. Jaszkiewicz, A.: On the Computational Efficiency of Multiple Objective Metaheuristics. The Knapsack Problem Case Study. European Journal of Operational Research 158(2), 418–433 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lan, G., DePuy, G.W., Whitehouse, G.E.: An effective and simple heuristic for the set covering problem. European Journal of Operational Research 176(3), 1387–1403 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Laumanns, M., Thiele, L., Zitzler, E.: An adaptative scheme to generate the Pareto front based on the epsilon-constraint method. Technical Report 199, Technischer Bericht, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology, ETH (2004)

    Google Scholar 

  25. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Operations Research 21, 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lust, T., Teghem, J.: Memots: a memetic algorithm integrating tabu search for combinatorial multiobjective optimization. RAIRO: Operations Research 42(1), 3–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lust, T., Teghem, J.: The multiobjective multidimensionnal knapsack problem: a survey and a new approach. Technical Report arXiv:1007.4063v1, arXiv (2010)

    Google Scholar 

  28. Lust, T., Teghem, J.: Two-phase Pareto local search for the biobjective traveling salesman problem. Journal of Heuristics 16(3), 475–510 (2010)

    Article  MATH  Google Scholar 

  29. Mavrotas, G., Figueira, J.R., Florios, K.: Solving the bi-objective multi-dimensional knapsack problem exploiting the concept of core. Applied Mathematics and Computation 215(7), 2502–2514 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Michalewicz, Z., Arabas, J.: Genetic algorithms for the 0/1 knapsack problem. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 134–143. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  31. Paquete, L., Chiarandini, M., Stützle, T.: Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 177–199. Springer, Berlin (2004)

    Chapter  Google Scholar 

  32. Prins, C., Prodhon, C., Wolfler Calvo, R.: Two-phase method and lagrangian relaxation to solve the bi-objective set covering problem. Annals OR 147(1), 23–41 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ulungu, E.L., Teghem, J.: Multiobjective combinatorial optimization problems: A survey. Journal of Multi-Criteria Decision Analysis 3, 83–104 (1994)

    Article  MATH  Google Scholar 

  34. Vianna, D.S., Arroyo, J.E.C.: A GRASP algorithm for the multi-objective knapsack problem. In: QEST 2004: Proceedings of the The Quantitative Evaluation of Systems, First International Conference, pp. 69–75. IEEE Computer Society, Washington, DC (2004)

    Google Scholar 

  35. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (November 1999)

    Google Scholar 

  36. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (May 2001)

    Google Scholar 

  37. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lust, T., Teghem, J., Tuyttens, D. (2011). Very Large-Scale Neighborhood Search for Solving Multiobjective Combinatorial Optimization Problems. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds) Evolutionary Multi-Criterion Optimization. EMO 2011. Lecture Notes in Computer Science, vol 6576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19893-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19892-2

  • Online ISBN: 978-3-642-19893-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics