iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-19437-5_24
Costco: Robust Content and Structure Constrained Clustering of Networked Documents | SpringerLink
Skip to main content

Costco: Robust Content and Structure Constrained Clustering of Networked Documents

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6609))

  • 1340 Accesses

Abstract

Connectivity analysis of networked documents provides high quality link structure information, which is usually lost upon a content-based learning system. It is well known that combining links and content has the potential to improve text analysis. However, exploiting link structure is non-trivial because links are often noisy and sparse. Besides, it is difficult to balance the term-based content analysis and the link-based structure analysis to reap the benefit of both. We introduce a novel networked document clustering technique that integrates the content and link information in a unified optimization framework. Under this framework, a novel dimensionality reduction method called COntent & STructure COnstrained (Costco) Feature Projection is developed. In order to extract robust link information from sparse and noisy link graphs, two link analysis methods are introduced. Experiments on benchmark data and diverse real-world text corpora validate the effectiveness of proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angelova, R., Siersdorfer, S.: A neighborhood-based approach for clustering of linked document collections. In: CIKM, pp. 778–779 (2006)

    Google Scholar 

  2. Bolelli, L., Ertekin, S., Giles, C.L.: Clustering scientific literature using sparse citation graph analysis. In: PKDD, pp. 30–41 (2006)

    Google Scholar 

  3. Chakrabarti, S., Dom, B., Indyk, P.: Enhanced hypertext categorization using hyperlinks. In: SIGMOD, pp. 307–318 (1998)

    Google Scholar 

  4. Cohn, D.A., Hofmann, T.: The missing link - a probabilistic model of document content and hypertext connectivity. In: NIPS, pp. 430–436 (2000)

    Google Scholar 

  5. Dhillon, I.S., Modha, D.S.: Concept decompositions for large sparse text data using clustering. Mach. Learn. 42(1-2), 143–175 (2001)

    Article  MATH  Google Scholar 

  6. Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning probabilistic models of link structure. J. Mach. Learn. Res. 3, 679–707 (2003)

    MATH  Google Scholar 

  7. He, X., Zha, H., Ding, C.H.Q., Simon, H.D.: Web document clustering using hyperlink structures. Computational Statistics & Data Analysis 41(1), 19–45 (2002)

    Article  MATH  Google Scholar 

  8. Henzinger, M.: Hyperlink analysis on the world wide web. In: Hypertext, pp. 1–3 (2005)

    Google Scholar 

  9. Ji, X., Xu, W.: Document clustering with prior knowledge, pp. 405–412 (2006)

    Google Scholar 

  10. Menczer, F.: Lexical and semantic clustering by web links. JASIST 55(14), 1261–1269 (2004)

    Article  Google Scholar 

  11. Modha, D.S., Spangler, W.S.: Clustering hypertext with applications to web searching. In: Hypertext, pp. 143–152 (2000)

    Google Scholar 

  12. Neumaier, A.: Solving ill-conditioned and singular linear systems: A tutorial on regularization. SIAM Review 40, 636–666 (1998)

    Article  MATH  Google Scholar 

  13. Neville, J., Adler, M., Jensen, D.: Clustering relational data using attribute and link information. In: Proceedings of the IJCAI Text Mining and Link Analysis Workshop (2003)

    Google Scholar 

  14. Oh, H.-J., Myaeng, S.H., Lee, M.-H.: A practical hypertext catergorization method using links and incrementally available class information. In: SIGIR, pp. 264–271 (2000)

    Google Scholar 

  15. Park, H.W., Thelwall, M.: Hyperlink analyses of the world wide web: A review. J. Computer-Mediated Communication 8(4) (2003)

    Google Scholar 

  16. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philo- sophical Magazine 2(6), 559–572 (1901)

    Article  MATH  Google Scholar 

  17. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  18. Shi, J., Malik, J.: Normalized cuts and image segmentation (2000)

    Google Scholar 

  19. Wang, Y., Kitsuregawa, M.: Evaluating contents-link coupled web page clustering for web search results. In: CIKM, pp. 499–506 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, S., Lee, D., Wang, A.H. (2011). Costco: Robust Content and Structure Constrained Clustering of Networked Documents. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2011. Lecture Notes in Computer Science, vol 6609. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19437-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19437-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19436-8

  • Online ISBN: 978-3-642-19437-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics