iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-17164-2_17
Bisimulation Proof Methods in a Path-Based Specification Language for Polynomial Coalgebras | SpringerLink
Skip to main content

Bisimulation Proof Methods in a Path-Based Specification Language for Polynomial Coalgebras

  • Conference paper
Programming Languages and Systems (APLAS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6461))

Included in the following conference series:

Abstract

Bisimulation is one of the fundamental concepts of the theory of coalgebras. However, it is difficult to verify whether a relation is a bisimulation. Although some categorical bisimulation proof methods for coalgebras have been proposed, they are not based on specification languages of coalgebras so that they are difficult to be used in practice. In this paper, a specification language based on paths of polynomial functors is proposed to specify polynomial coalgebras. Since bisimulation can be defined by paths, it is easy to transform Sangiorgi’s bisimulation proof methods for labeled transition systems to reasoning rules in such a path-based specification language for polynomial coalgebras. The paper defines the notions of progressions and sound functions based on paths, then introduces the notion of faithful contexts for the language and presents a bisimulation-up-to context proof technique for polynomial coalgebras. Several examples are given to illustrate how to make use of the bisimulation proof methods in the language.

Supported by the National Natural Science Foundation of China under Grant No. 60673050.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rutten, J.: Universal coalgebra: A theory of systems. TCS 249(1), 3–80 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sangiorgi, D.: On the origins of bisimulation and coinduction. TOPLAS, Articale 15 31(4) (2009)

    Google Scholar 

  3. Sangiorgi, D.: On the bisimulation proof method. Mathematical Structures in Computer Science 8, 447–479 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sangiorgi, D., Walker, D.: The pi-calculus: a Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  5. Rothe, J., Tews, H., Jacobs, B.: The coalgebraic class specification language CCSL. Journal of Universal Computer Science 7(2), 175–193 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Cîrstea, C.: Integrating Observatins and Computations in the Specification of State-based, Dynamical Systems. PhD thesis, University of Oxford (2000)

    Google Scholar 

  7. Kurz, A.: Specifying coalgebras with modal logic. TCS 260(1-2), 119–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rößiger, M.: From modal logic to terminal coalgebras. TCS 260, 209–228 (2001)

    Article  MathSciNet  Google Scholar 

  9. Goldblatt, R.: Equational logic of polynomial coalgebras. In: Balbiani, P., Suzuki, N.-Y., Wolter, F., Zakharyaschev, M. (eds.) Advances in Modal Logic, vol. 4, pp. 149–184. King’s College Publications (2003)

    Google Scholar 

  10. Bonsangue, M., Rutten, J., Silva, A.: Regular expressons for polynomial coalgebras. CWI Report SEN-E0703 (2007)

    Google Scholar 

  11. Bonsangue, M., Rutten, J., Silva, A.: An algebra for Kripke polynomial coalgebras. In: 24th Annual IEEE Symposium on Logic in Computer Science, pp. 49–58. IEEE Press, Los Alamitos (2009)

    Google Scholar 

  12. Jacobs, B.: Towards a duality result in coalgebraic modal logic. ENTCS 33 (2000)

    Google Scholar 

  13. Goldblatt, R.: A calculus of terms for coalgebras of polynomial functors. ENTCS 44, 161–184 (2001)

    MATH  Google Scholar 

  14. Rößiger, M.: Languages for coalgebras on datafunctors. ENTCS 19, 39–60 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Jacobs, B.: The temporal logic of coalgebras via galois algebras. Technical Report CSI-R9906, Computer Science Institution, University of Nijmegen (1999)

    Google Scholar 

  16. Rutten, J.: Elements of stream calculus (an extensive exercise in coinduction). ENTCS 45, 1–66 (2001)

    MATH  Google Scholar 

  17. Jacobs, B.: Exercises in coalgebraic specification. In: Backhouse, R., Crole, R., Gibbons, J. (eds.) Algebraic and Coalgebraic Methods in the Mathematics of Program Construction. LNCS, vol. 2297, pp. 237–280. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Moss, L.: Coalgebraic logic. APAL 96(1-3), 277–317 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Jacobs, B.: Many-sorted coalgeraic modal logic: a model-theoretical study. ITA 35(1), 31–59 (2001)

    MATH  Google Scholar 

  20. Pattinson, D.: Coalgebraic modal logic: soundness, completeness and decidability of local consequence. TCS 309(1-3), 177–193 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lenisa, M.: From set-theoretic coinduction to coalgebraic coinduction: some resuults, some problems. ENTCS 19, 1–21 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Bartels, F.: Generalised coinduction. Mathematical Structures in Computer Science 13, 321–348 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lingyun, L.: An effective coalgebraic bisimulation proof method. ENTCS 164, 105–119 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Observations. Book Draft (2005), http://www.cs.ru.nl/~bart

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, Xc., Li, Yj., Li, Wj., Qiao, Hy., Shu, Zm. (2010). Bisimulation Proof Methods in a Path-Based Specification Language for Polynomial Coalgebras. In: Ueda, K. (eds) Programming Languages and Systems. APLAS 2010. Lecture Notes in Computer Science, vol 6461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17164-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17164-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17163-5

  • Online ISBN: 978-3-642-17164-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics