iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-16926-7_3
Complexity Results for the Spanning Tree Congestion Problem | SpringerLink
Skip to main content

Complexity Results for the Spanning Tree Congestion Problem

  • Conference paper
Graph Theoretic Concepts in Computer Science (WG 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6410))

Included in the following conference series:

Abstract

We study the problem of determining the spanning tree congestion of a graph. We present some sharp contrasts in the complexity of this problem. First, we show that for every fixed k and d the problem to determine whether a given graph has spanning tree congestion at most k can be solved in linear time for graphs of degree at most d. In contrast, if we allow only one vertex of unbounded degree, the problem immediately becomes NP-complete for any fixed k ≥ 10. For very small values of k however, the problem becomes polynomially solvable. We also show that it is NP-hard to approximate the spanning tree congestion within a factor better than 11/10. On planar graphs, we prove the problem is NP-hard in general, but solvable in linear time for fixed k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmetric instances of MAX-3SAT, ECCC TR03-049 (2003)

    Google Scholar 

  2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209, 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brandstädt, A., Dragan, F.F., Le, H.-O., Le, V.B.: Tree spanners on chordal graphs: complexity and algorithms. Theoret. Comput. Sci. 310, 329–354 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandstädt, A., Dragan, F.F., Le, H.-O., Le, V.B., Uehara, R.: Tree spanners for bipartite graphs and probe interval graphs. Algorithmica 47, 27–51 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discrete Math. 8, 359–387 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castejón, A., Ostrovskii, M.I.: Minimum congestion spanning trees of grids and discrete toruses. Discuss. Math. Graph Theory 29, 511–519 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  9. Courcelle, B.: The monadic second-order logic of graphs III: Tree-decompositions, minor and complexity issues. Theor. Inform. Appl. 26, 257–286 (1992)

    MathSciNet  MATH  Google Scholar 

  10. Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  11. Dragan, F.F., Fomin, F.V., Golovach, P.A.: Spanners in sparse graphs. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 597–608. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Fekete, S.P., Kremer, J.: Tree spanners in planar graphs. Discrete Appl. Math. 108, 85–103 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  14. Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. J. Comput. 51, 326–362 (2008)

    Article  Google Scholar 

  15. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21, 549–568 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hruska, S.W.: On tree congestion of graphs. Discrete Math. 308, 1801–1809 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kozawa, K., Otachi, Y., Yamazaki, K.: On spanning tree congestion of graphs. Discrete Math. 309, 4215–4224 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Law, H.-F.: Spanning tree congestion of the hypercube. Discrete Math. 309, 6644–6648 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston (1976)

    MATH  Google Scholar 

  20. Löwenstein, C., Rautenbach, D., Regen, F.: On spanning tree congestion. Discrete Math. 309, 4653–4655 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ostrovskii, M.I.: Minimal congestion trees. Discrete Math. 285, 219–226 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ostrovskii, M.I.: Minimum congestion spanning trees in planar graphs. Discrete Math. 310, 1204–1209 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Raspaud, A., Sýkora, O., Vrťo, I.: Congestion and dilation, similarities and differences: A survey. In: SIROCCO 2000, pp. 269–280. Carleton Scientific (2000)

    Google Scholar 

  24. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Combin. Theory Ser. B 52, 153–190 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Simonson, S.: A variation on the min cut linear arrangement problem. Math. Syst. Theory 20, 235–252 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Otachi, Y., Bodlaender, H.L., van Leeuwen, E.J. (2010). Complexity Results for the Spanning Tree Congestion Problem. In: Thilikos, D.M. (eds) Graph Theoretic Concepts in Computer Science. WG 2010. Lecture Notes in Computer Science, vol 6410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16926-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16926-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16925-0

  • Online ISBN: 978-3-642-16926-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics