Abstract
The All-Distances SVM is a single-objective light extension of the binary μ-SVM for multi-category classification that is competitive against multi-objective SVMs, such as One-against-the-Rest SVMs and One-against-One SVMs. Although the model takes into account considerably less constraints than previous formulations, it lacks of an efficient training algorithm, making its use with medium and large problems impracticable. In this paper, a Sequential Minimal Optimization-like algorithm is proposed to train the All-Distances SVM, making large problems abordable. Experimental results with public benchmark data are presented to show the performance of the AD-SVM trained with this algorithm against other single-objective multi-category SVMs.
This work was supported in part by Research Grant FB0821 “Centro Científico Tecnológico de Valparaíso” UTFSM and by DGIP-UTFSM Grant.
Chapter PDF
Similar content being viewed by others
Keywords
References
Blake, C., Merz, C.: UCI repository of machine learning databases (1998), http://mlr.cs.umass.edu/ml/index.html
Candel, D.: Source code of the smo algorithm for the ad-svm, http://git.inf.utfsm.cl/?p=dcontard.git;a=summary
Candel, D.: Algoritmo tipo SMO para la AD-SVM aplicado a Clasificación Multicategoría. Master’s thesis, Universidad Técnica Federico Santa María, Valparaíso, Chile (2010), http://www.alumnos.inf.utfsm.cl/~dcontard/tesis.pdf
Chang, C.C., Lin, C.J.: Libsvm data: Classification, multi-class (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
Chen, P.H., Fan, R.E., Lin, C.J.: A study on SMO-type decomposition methods for support vector machines. IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council 17(4), 893–908 (2006)
Coleman, T.F., Li, Y.: A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM J. on Optimization 6(4), 1040–1058 (1996)
Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research (2), 265–292 (2001)
Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass problems. Machine Learning 47(2-3), 201–233 (2002)
Crisp, D., Burges, C.: A Geometric Interpretation of ν-SVM Classifiers. In: Advances in Neural Information, vol. (12), pp. 244–250. MIT, Cambridge (2000)
Fan, R.e., Chen, P.h., Lin, C.j.: Working Set Selection Using Second Order Information for Training Support Vector Machines. Journal of Machine Learning Research 6, 1889–1918 (2005)
Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)
Joachims, T.: Making large-scale support vector machine learning practical (1998)
Keerthi, S., Gilbert, E.: Convergence of a Generalized SMO Algorithm for SVM Classifier Design. Machine Learning 46(1), 351–360 (2002)
Keerthi, S., Shevade, S., Murthy, K., Bhattacharyya, C.: Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Computation 13(3), 637–649 (2001)
Kressel, U.: Pairwise classification and support vector machines. In: Advances in kernel methods: support vector learning, pp. 255–268. MIT Press, Cambridge (1999)
Lee, Y., Li, Y., Wahba, G.: Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data. Journal of the American Statistical Association 99(465), 67–81 (2004)
Ñanculef, R., Concha, C., Allende, H., Candel, D., Moraga, C.: Ad-svms: A light extension of svms for multicategory classification. International Journal of Hybrid Intelligent Systems 6(2), 69–79 (2009)
Platt, J.C.: Fast training of support vector machines using sequential minimal optimization, pp. 185–208 (1999)
Scholkopf, B., Smola, A., Williamson, R., Bartlett, P.: New support vector algorithms. Neural computation 12(5), 1207–1245 (2000)
Vapnik, V.N.: The nature of statistical learning theory. Springer, Heidelberg (1995)
Weston, J., Watkins, C.: Support vector machines for multiclass pattern recognition. In: Proceedings of the Seventh ESSAN, pp. 219–224 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Candel, D., Ñanculef, R., Concha, C., Allende, H. (2010). A Sequential Minimal Optimization Algorithm for the All-Distances Support Vector Machine. In: Bloch, I., Cesar, R.M. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2010. Lecture Notes in Computer Science, vol 6419. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16687-7_64
Download citation
DOI: https://doi.org/10.1007/978-3-642-16687-7_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16686-0
Online ISBN: 978-3-642-16687-7
eBook Packages: Computer ScienceComputer Science (R0)