iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-16367-8_9
Sublinear Graph Approximation Algorithms | SpringerLink
Skip to main content

Sublinear Graph Approximation Algorithms

  • Chapter
Property Testing

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6390))

  • 1196 Accesses

Abstract

We survey the recent research on algorithms that approximate the optimal solution size for problems such as vertex cover, maximum matching, and dominating set. Techniques developed for these problems have found applications in property testing in the bounded-degree graph model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chazelle, B., Rubinfeld, R., Trevisan, L.: Approximating the minimum spanning tree weight in sublinear time. SIAM J. Comput. 34(6), 1370–1379 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms. Theor. Comput. Sci. 381(1-3), 183–196 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: SODA, pp. 980–989 (2006)

    Google Scholar 

  4. Marko, S., Ron, D.: Approximating the distance to properties in bounded-degree and general sparse graphs. ACM Transactions on Algorithms 5(2) (2009)

    Google Scholar 

  5. Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4), 1036–1053 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  7. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local improvements. In: FOCS, pp. 327–336 (2008)

    Google Scholar 

  8. Yoshida, Y., Yamamoto, M., Ito, H.: An improved constant-time approximation algorithm for maximum matchings. In: STOC, pp. 225–234 (2009)

    Google Scholar 

  9. Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)

    Article  MATH  Google Scholar 

  11. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Mathematics 13, 383–390 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Alon, N.: On constant time approximation of parameters of bounded degree graphs

    Google Scholar 

  13. Elek, G.: L 2-spectral invariants and convergent sequences of finite graphs. Journal of Functional Analysis 254(10), 2667–2689 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36, 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Alon, N., Seymour, P.D., Thomas, R.: A separator theorem for graphs with an excluded minor and its applications. In: STOC, pp. 293–299 (1990)

    Google Scholar 

  16. Czumaj, A., Shapira, A., Sohler, C.: Testing hereditary properties of nonexpanding bounded-degree graphs. SIAM J. Comput. 38(6), 2499–2510 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hassidim, A., Kelner, J.A., Nguyen, H.N., Onak, K.: Local graph partitions for approximation and testing. In: FOCS (2009)

    Google Scholar 

  18. Elek, G.: Parameter testing with bounded degree graphs of subexponential growth. arXiv:0711.2800v3 (2009)

    Google Scholar 

  19. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica 32(2), 302–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Benjamini, I., Schramm, O., Shapira, A.: Every minor-closed property of sparse graphs is testable. In: STOC, pp. 393–402 (2008)

    Google Scholar 

  21. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series B 92(2), 325–357 (2004); Special Issue Dedicated to Professor W.T. Tutte

    Article  MathSciNet  MATH  Google Scholar 

  22. Alon, N., Shapira, A.: A characterization of the (natural) graph properties testable with one-sided error. SIAM J. Comput. 37(6), 1703–1727 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bogdanov, A., Obata, K., Trevisan, L.: A lower bound for testing 3-colorability in bounded-degree graphs. In: FOCS, pp. 93–102 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Onak, K. (2010). Sublinear Graph Approximation Algorithms. In: Goldreich, O. (eds) Property Testing. Lecture Notes in Computer Science, vol 6390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16367-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16367-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16366-1

  • Online ISBN: 978-3-642-16367-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics