Abstract
We survey the recent research on algorithms that approximate the optimal solution size for problems such as vertex cover, maximum matching, and dominating set. Techniques developed for these problems have found applications in property testing in the bounded-degree graph model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chazelle, B., Rubinfeld, R., Trevisan, L.: Approximating the minimum spanning tree weight in sublinear time. SIAM J. Comput. 34(6), 1370–1379 (2005)
Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms. Theor. Comput. Sci. 381(1-3), 183–196 (2007)
Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: SODA, pp. 980–989 (2006)
Marko, S., Ron, D.: Approximating the distance to properties in bounded-degree and general sparse graphs. ACM Transactions on Algorithms 5(2) (2009)
Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4), 1036–1053 (1986)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)
Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local improvements. In: FOCS, pp. 327–336 (2008)
Yoshida, Y., Yamamoto, M., Ito, H.: An improved constant-time approximation algorithm for maximum matchings. In: STOC, pp. 225–234 (2009)
Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)
Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)
Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Mathematics 13, 383–390 (1975)
Alon, N.: On constant time approximation of parameters of bounded degree graphs
Elek, G.: L 2-spectral invariants and convergent sequences of finite graphs. Journal of Functional Analysis 254(10), 2667–2689 (2008)
Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36, 177–189 (1979)
Alon, N., Seymour, P.D., Thomas, R.: A separator theorem for graphs with an excluded minor and its applications. In: STOC, pp. 293–299 (1990)
Czumaj, A., Shapira, A., Sohler, C.: Testing hereditary properties of nonexpanding bounded-degree graphs. SIAM J. Comput. 38(6), 2499–2510 (2009)
Hassidim, A., Kelner, J.A., Nguyen, H.N., Onak, K.: Local graph partitions for approximation and testing. In: FOCS (2009)
Elek, G.: Parameter testing with bounded degree graphs of subexponential growth. arXiv:0711.2800v3 (2009)
Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica 32(2), 302–343 (2002)
Benjamini, I., Schramm, O., Shapira, A.: Every minor-closed property of sparse graphs is testable. In: STOC, pp. 393–402 (2008)
Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series B 92(2), 325–357 (2004); Special Issue Dedicated to Professor W.T. Tutte
Alon, N., Shapira, A.: A characterization of the (natural) graph properties testable with one-sided error. SIAM J. Comput. 37(6), 1703–1727 (2008)
Bogdanov, A., Obata, K., Trevisan, L.: A lower bound for testing 3-colorability in bounded-degree graphs. In: FOCS, pp. 93–102 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Onak, K. (2010). Sublinear Graph Approximation Algorithms. In: Goldreich, O. (eds) Property Testing. Lecture Notes in Computer Science, vol 6390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16367-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-16367-8_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16366-1
Online ISBN: 978-3-642-16367-8
eBook Packages: Computer ScienceComputer Science (R0)