Abstract
Ubiquitous search of the physical world has recently received significant attention. In this paper, we investigate situation analysis based user intention recognition, which can be useful to retrieve information that may perfectly satisfy a user’s needs. We first introduce a hierarchical user intention model based on CRFs (Conditional Random Fields). With the model, a BP (Belief Propagation) based inference method is proposed to recognize user search intention based on situation analysis. A variety of sensing mechanisms are adopted to collect context information of the physical world for robust and reliable situation analysis. We developed a prototype in a real home setting and experiments were performed to examine the effectiveness of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tan, C.C., Sheng, B., Wang, H., Li, Q.: Microsearch: When Search Engines Meet Small Devices. In: Indulska, J., Patterson, D.J., Rodden, T., Ott, M. (eds.) PERVASIVE 2008. LNCS, vol. 5013, pp. 93–110. Springer, Heidelberg (2008)
Wang, H., Tan, C.C., Li, Q.: Snoogle: A Search Engine for the Physical World. In: The 27th IEEE Conference on Computer Communications, pp. 2056–2064 (2008)
Kiong, Y.K., Vikram, S., Mehul, M.: MAX: Wide Area Human-Centric Search of the Physical World. ACM Transactions on Sensor Networks 4(4), 26 (2008)
Wang, M., Cao, J., Sun, Y., Li, J.: Toward Ubiquitous Searching. In: The ICPADS 2007, pp. 1–8 (2007)
Guo, B., Satake, S., Imai, M.: Home-Explorer: Ontology-based Physical Artifact Search and Hidden Object Detection System. In: Mobile Information Systems, vol. 4, pp. 81–103. IOS Press, Amsterdam (2008)
Frank, C., Bolliger, P., Roduner, C., Kellerer, W.: Objects Calling Home: Locating Objects Using Mobile Phones. In: LaMarca, A., Langheinrich, M., Truong, K.N. (eds.) PERVASIVE 2007. LNCS, vol. 4480, pp. 351–368. Springer, Heidelberg (2007)
Koolwaaij, J., Tarlano, A., Luther, M., Nurmi, P., Mrohs, B., Battestini, A.: Context Watcher - Sharing Context Information in Everyday Life. In: The International Conference on Web Technologies, Applications, and Services (2006)
Gaonkar, S., Li, J., Choudhury, R.R., Cox, L., Schmidt, A.: Micro-Blog: Sharing and Querying Content through Mobile Phones and Social Participation. In: The 6th International Conference on Mobile Systems, pp. 174–186 (2008)
Dearman, D., Kellar, M., Truong, K.N.: An Examination of Daily Information Needs and Sharing Opportunities. In: The 21th International Conference on Computer Supported Cooperative Work, pp. 679–688 (2008)
Kang, I.-H., Kim, G.C.: Query Type Classification for Web Document Retrieval. In: 26th ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 64–71. ACM Press, New York (2003)
Jansen, B.J., Booth, D.L., Spink, A.: Determining the User Intent of Web Search Engine Queries. In: The 16th International Conference on World Wide Web, pp. 1149–1150. ACM Press, New York (2007)
Teevan, J., Dumais, S.T., Horvitz, E.: Personalizing Search via Automated Analysis of Interests and Activities. In: 28th ACM SIGIR Conference on Research and Development in Informaion Retrieval, pp. 449–456. ACM Press, New York (2005)
Baeza-Yates, R., Calderón-Benavides, L., González-Caro, C.: The Intention behind Web Queries. In: Crestani, F., Ferragina, P., Sanderson, M. (eds.) SPIRE 2006. LNCS, vol. 4209, pp. 98–109. Springer, Heidelberg (2006)
Stamou, S., Ntoulas, A.: Search Personalization Through Query and Page Topical Analysis. In: User Modeling and User-Adapted Interaction, vol. 19(1-2), pp. 5–33. Kluwer Academic Publishers, Hingham (2009)
Park, G., Chae, J., Lee, D.H., Lee, S.: User Intention based Personalized Search: HPS(Hierarchical Phrase Serch). WSEAS Transactions on Circuits and Systems 7(4), 266–276 (2008)
Feng, G., Malek, A., Naphtali, R.: Personalized Approach for Mobile Search. In: The 2009 World Congress on Computer Science and Information Engineering, pp. 322–326. IEEE Computer Society, Washington (2009)
Horvitz, E., Breese, J., Heckerman, D., Hovel, D., Rommelse, K.: The Lumiere project: Bayesian user modeling for inferring the goals and needs of software users. In: The 14th Conference on Uncertainty in Artificial Intelligence, pp. 256–265 (1998)
Chen, Z., Lin, F., Liu, H., Liu, Y., Ma, W., Liu, W.: User Intention Modeling in Web Applications Using Data Mining. In: The World Wide Web: Internet and Web Information Systems, vol. 5(3), pp. 181–191. Kluwer Academic Publishers, Dordrecht (2002)
Armentano, M.G., Amandi, A.A.: Recognition of User Intentions for Interface Agents with Variable Order Markov Models. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 173–184. Springer, Heidelberg (2009)
Burghardt, C., Propp, S., Kirste, T., Forbrig, P.: Rapid Prototyping and Evaluation of Intention Analysis for Smart Environments. In: Tavanganan, D., Kirste, T., Timmermann, D., Lucke, U., Versick, D. (eds.) IMC 2009. CCIS, vol. 53, pp. 239–250. Springer, Heidelberg (2009)
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In: The 18th International Conference on Machine Learning, pp. 282–289. Morgan Kaufmann, San Francisco (2001)
Vail, D., Veloso, M., Lafferty, J.: Conditional Random Fields for Activity Recognition. In: The 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1331–1338. ACM Press, New York (2007)
McCallum, A.: Efficiently Inducing Features of Conditional Random Fields. In: The 19th Conference on Uncertainty in Artificial Intelligence, UAI (2003)
Liao, L., Fox, D., Kautz, H.: Hierarchical Conditional Random Fields for GPS-Based Activity Recognition. Robotics Research 28, 478–506 (2007)
Yedidia, J., Freeman, W., Weiss, Y.: Understanding Belief Propagation and Its Generalizations: Exploring Artificial Intelligence in the New Millennium. Morgan Kaufmann Publishers, San Francisco (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, Z., Zhou, X., Yu, Z., He, Y., Zhang, D. (2010). Inferring User Search Intention Based on Situation Analysis of the Physical World. In: Yu, Z., Liscano, R., Chen, G., Zhang, D., Zhou, X. (eds) Ubiquitous Intelligence and Computing. UIC 2010. Lecture Notes in Computer Science, vol 6406. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16355-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-16355-5_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16354-8
Online ISBN: 978-3-642-16355-5
eBook Packages: Computer ScienceComputer Science (R0)