Abstract
Multiple approaches have been developed in order to predict the protein secondary structure. In this paper, we propose an approach to such a problem based on evolutionary computation. The proposed approach considers various amino acids properties in order to predict the secondary structure of a protein. In particular, we will consider the hydrophobicity, the polarity and the charge of amino acids. In this study, we focus on predicting a particular kind of secondary structure: α-helices. The results of our proposal will be a set of rules that will identify the beginning or the end of such a structure.
Chapter PDF
Similar content being viewed by others
References
Gu, J., Bourne, P.E.: Structural Bioinformatics (Methods of Biochemical Analysis). Wiley-Blackwell, Chichester (2003)
Berg, J.M., Stryer, L.: Biochemistry. Reverte (2008)
Chou, P.Y., Fasman, G.D.: Prediction of protein conformation. Biochemistry 13(2), 222–245 (1974)
Garnier, J., Osguthorpe, D.J., Robson, B.: Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120, 97–120 (1978)
Lim, V.I.: Algorithms for prediction of a-helical and b-structural regions in globular proteins. J. Mol. Biol. 88, 857–872 (1974)
Qian, N., Sejnowski, T.J.: Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol. 202, 865–884 (1988)
McGuffin, L.J., Bryson, K., Jones, D.T.: The psipred protein structure prediction server. Bioinformatics 16, 404–405 (2000)
Fariselli, P., Casadio, R.: A neural network based predictor of residue contacts in proteins. Protein Engineering 12, 15–21 (1999)
Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. Biochim. Biophys. 231, 75–81 (1993)
Frishman, D., Argos, P.: Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Engineering 9, 133–142 (1996)
Salamov, A.A., Solovyev, V.V.: Protein secondary structure prediction using local alignments. J. Mol. Biol. 268, 31–36 (1997)
Ward, J.J., McGuffin, L.J., Buxton, B.F., Jone, D.T.: Secondary structure prediction with support vector machines. Bioinformatics 13, 1650–1655 (2003)
Cheng, J., Baldi, P.: Improved residue contact prediction using support vector machines and a large feature set. Bioinformatics 8, 113 (2007)
Wilson, C.L., Hubbard, S.J., Doig: A critical assessment of the secondary structure prediction of alpha-helices and their n-termini in proteins. Protein Eng. 15, 545–554 (2002)
Cui, Y., Chen, R.S., Hung, W.: Protein folding simulation with genetic algorithm and supersecondary structure constraints. Proteins: Structure, Function and Genetics 31, 247–257 (1998)
Ramakrishnan, C., Ramachandran, G.N.: Stereochemical criteria for polypeptide and protein chain conformation. Byophys Journal 5, 909–933 (1965)
Protein data bank online repository, ftp://ftp.wwpdb.org
Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. J. Mol. Bio. 157, 105–132 (1982)
Grantham, R.: Amino acid difference formula to help explain protein evolution. J. J. Mol. Bio. 185, 862–864 (1974)
Klein, P., Kanehisa, M., DeLisi, C.: Prediction of protein function from sequence properties: Discriminant analysis of a data base. Biochim. Biophys. 787, 221–226 (1984)
Richardson, J.S., Richardson, D.C.: Amino acid preferences for specific locations at the ends of alpha helices. Science 240, 1648–1652 (1998)
Doig, A.J.: Baldwin R.L. N- and c-capping preferences for all 20 amino acids in alpha-helical peptides. Protein Science 4(7), 1325–1336 (1995)
Fonseca, N.A., Camacho, R., Magalhaes, A.L.: Amino acid pairing at the n- and c-termini of helical segments in proteins. Proteins 70, 188–196 (2007)
Protein data bank web, http://www.wwpdb.org
Protein data bank advanced search, http://www.pdb.org/pdb/search/advSearch.do
Complete list of pdb protein identifiers used in this article, http://www.upo.es/eps/marquez/proteins.txt
Wilson, C.L., Boardman, P.E., Doig, A.J., Hubbard, S.J.: Improved prediction for n-termini of alpha-helices using empirical information. Proteins 57(2), 322–330 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Márquez Chamorro, A.E., Divina, F., Aguilar Ruiz, J.S., Cortés, G.A. (2010). Alpha Helix Prediction Based on Evolutionary Computation. In: Dijkstra, T.M.H., Tsivtsivadze, E., Marchiori, E., Heskes, T. (eds) Pattern Recognition in Bioinformatics. PRIB 2010. Lecture Notes in Computer Science(), vol 6282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16001-1_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-16001-1_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16000-4
Online ISBN: 978-3-642-16001-1
eBook Packages: Computer ScienceComputer Science (R0)