iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-15781-3_5
How to Allocate Goods in an Online Market? | SpringerLink
Skip to main content

How to Allocate Goods in an Online Market?

  • Conference paper
Algorithms – ESA 2010 (ESA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6347))

Included in the following conference series:

Abstract

We study an online version of Fisher’s linear case market. In this market there are m buyers and a set of n dividable goods to be allocated to the buyers. The utility that buyer i derives from good j is u ij . Given an allocation \(\hat{U}\) in which buyer i has utility \(\hat{U}_i\) we suggest a quality measure that is based on taking an average of the ratios \(U_{i}/\hat{U}_i\) with respect to any other allocation U. We motivate this quality measure, and show that market equilibrium is the optimal solution with respect to this measure. Our setting is online and so the allocation of each good should be done without any knowledge of the upcoming goods.

We design an online algorithm for the problem that is only worse by a logarithmic factor than any other solution with respect to our proposed quality measure, and in particular competes with the market equilibrium allocation. We prove a tight lower bound which shows that our algorithm is optimal up to constants. Our algorithm uses a primal dual convex programming scheme. To the best of our knowledge this is the first time that such a scheme is used in the online framework.

We also discuss an application of the framework in display advertising business in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arrow, K., Debreu, G.: Existence of an equilibrium for competitive economy. Econometrica, 265–290 (1954)

    Google Scholar 

  2. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S.A., Waarts, O.: On-line routing of virtual circuits with applications to load balancing and machine scheduling. J. ACM 44(3), 486–504 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Awerbuch, B., Azar, Y., Grove, E.F., Kao, M.-Y., Krishnan, P., Vitter, J.S.: Load balancing in the lp norm. In: Proc. of 36th FOCS, pp. 383–391 (1995)

    Google Scholar 

  4. Blum, A., Sandholm, T., Zinkevich, M.: Online algorithms for market clearing. J. ACM 53(5), 845–879 (2006)

    Article  MathSciNet  Google Scholar 

  5. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  6. Brainard, W.C., Scarf, H.E.: How to compute equilibrium prices in 1891. In: Cowles Foundations Discussion paper, p. 1270 (2000)

    Google Scholar 

  7. Buchbinder, N., Naor, J.: Online primal-dual algorithms for covering and packing problems. In: 13th Annual European Symposium on Algorithms (2005)

    Google Scholar 

  8. Buchbinder, N., Naor, J.: Improved bounds for online routing and packing via a primal-dual approach. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006) (2006)

    Google Scholar 

  9. Buchbinder, N., Jain, K., Naor, J.(S.).: Online primal-dual algorithms for maximizing ad-auctions revenue. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 253–264. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Buchbinder, N., Naor, J.(S.): The design of competitive online algorithms via a primaldual approach. Foundations and Trends in Theoretical Computer Science 3, 93–263 (2009)

    Article  MathSciNet  Google Scholar 

  11. Chakrabarty, D., Devanur, N.R., Vazirani, V.V.: New results on rationality and strongly polynomial time solvability in eisenberg-gale markets. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 239–250. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Devanur, N.R., Kannan, R.: Market equilibria in polynomial time for fixed number of goods or agents. In: FOCS, pp. 45–53 (2008)

    Google Scholar 

  13. Devanur, N.R., Papadimitriou, C.H., Saberi, A., Vazirani, V.V.: Market equilibrium via a primal-dual-type algorithm. In: FOCS, pp. 389–395 (2002)

    Google Scholar 

  14. Eisenberg, E., Gale, D.: Consensus of subjective probabilioties: The pari-mutuel method. Annual of mathematical statistics 30, 165–168 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  15. Feldman, J., Korula, N., Mirrokni, V.S., Muthukrishnan, S., Pál, M.: Online ad assignment with free disposal. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 374–385. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Jain, K., Vazirani, V.V.: Eisenberg-gale markets: algorithms and structural properties. In: STOC 2007: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pp. 364–373 (2007)

    Google Scholar 

  17. Mahdian, M., Saberi, A.: Multi-unit auctions with unknown supply. In: EC 2006: Proceedings of the 7th ACM conference on Electronic commerce, pp. 243–249 (2006)

    Google Scholar 

  18. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online matching. J. ACM 54(5), 22 (2007)

    Article  MathSciNet  Google Scholar 

  19. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, New York (2007)

    MATH  Google Scholar 

  20. Scarf, H.: The computation of economic equilibria (with collaboration of t. hansen). In: Cowles foundation monograph, No. 24 (1973)

    Google Scholar 

  21. Stolyar, A.L.: Greedy primal-dual algorithm for dynamic resource allocation in complex networks. Queueing Syst. Theory Appl. 54(3), 203–220 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Azar, Y., Buchbinder, N., Jain, K. (2010). How to Allocate Goods in an Online Market?. In: de Berg, M., Meyer, U. (eds) Algorithms – ESA 2010. ESA 2010. Lecture Notes in Computer Science, vol 6347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15781-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15781-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15780-6

  • Online ISBN: 978-3-642-15781-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics