Abstract
Matrix Factorization-based algorithms are among the state-of-the-art in Collaborative Filtering methods. In many of these models, a least squares loss functional is implicitly or explicitly minimized and thus the resulting estimates correspond to the conditional mean of the potential rating a user might give to an item. However they do not provide any information on the uncertainty and the confidence of the Recommendation. We introduce a novel Matrix Factorization algorithm that estimates the conditional quantiles of the ratings. Experimental results demonstrate that the introduced model performs well and can potentially be a very useful tool in Recommender Engines by providing a direct measure of the quality of the prediction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bell, R., Koren, Y., Volinsky, C.: The bellkor solution to the neflix prize. Technical report, AT&T Labs (2007)
Ries, S.: Extending bayesian trust models regarding context-dependence and user friendly representation. In: Proc. of the 2009 ACM Symposium on Applied Computing. ACM, New York (2009)
Koenker, R., Hallock, K.: Quantile regression. Journal of Economic Perspectives 15(4), 143–156 (2001)
Takeuchi, I., Le, Q.V., Sears, T.D., Smola, A.J.: Nonparametric quantile regression. Journal of Machine Learning Research 7, 1231–1264 (2006)
Amatriain, X., Pujol, J.M., Oliver, N.: I like it... i like it not: Evaluating user rating noise in recommender systems. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 247–258. Springer, Heidelberg (2009)
Srebro, N., Rennie, J., Jaakkola, T.: Maximum-margin matrix factorization. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17 NIPS. MIT Press, Cambridge (2005)
Hoffman, T.: Latent semantic models for collaborative filtering. ACM Transactions on Information Systems (TOIS) 22(1), 89–115 (2004)
Takacs, G., Pilaszy, I., Nemeth, B., Tikk, D.: Scalable collaborative filtering approaches for large recommender systems. Journal of Machine Learning Research 10, 623–656 (2009)
Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). ACM Press, New York (2009)
Srebro, N., Jaakkola, T.: Weighted low-rank approximations. In: Proceedings of the 20th International Conference on Machine Learning ICML, pp. 720–727. AAAI Press, Menlo Park (2003)
Rennie, J., Srebro, N.: Fast maximum margin matrix factorization for collaborative prediction. In: Proc. of the 22nd International Conference on Machine Learning ICML (2005)
Srebro, N., Shraibman, A.: Rank, trace-norm and max-norm. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 545–560. Springer, Heidelberg (2005)
Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Advances in Neural Information Processing Systems 20 NIPS. MIT Press, Cambridge (2008)
Abernethy, J., Bach, F., Evgeniou, T., Vert, J.P.: A new approach to collaborative filtering: Operator estimation with spectral regularization. Journal of Machine Learning Research 10, 803–826 (2009)
Agarwall, D., Chen, B.C.: Regression-based latend factor models. In: Proceedings of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). ACM Press, New York (2009)
Bell, R., Koren, Y.: Improved neighborhood based collaborative filtering. In: The Netflix-KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition. ACM Press, New York (2007)
Potter, G.: Putting the collaborator back into collaborative filtering. In: The 2nd-Netflix-KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition. ACM Press, New York (2008)
Pilaszy, I., Tikk, D.: Recommending new movies: Even a few ratings are more valuable then metadata. In: Proceedings of the 3rd ACM International Conference on Recommender Systems (RecSys). ACM Press, New York (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Karatzoglou, A., Weimer, M. (2010). Quantile Matrix Factorization for Collaborative Filtering. In: Buccafurri, F., Semeraro, G. (eds) E-Commerce and Web Technologies. EC-Web 2010. Lecture Notes in Business Information Processing, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15208-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-15208-5_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15207-8
Online ISBN: 978-3-642-15208-5
eBook Packages: Computer ScienceComputer Science (R0)