iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-15208-5_23
Quantile Matrix Factorization for Collaborative Filtering | SpringerLink
Skip to main content

Quantile Matrix Factorization for Collaborative Filtering

  • Conference paper
E-Commerce and Web Technologies (EC-Web 2010)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 61))

Included in the following conference series:

Abstract

Matrix Factorization-based algorithms are among the state-of-the-art in Collaborative Filtering methods. In many of these models, a least squares loss functional is implicitly or explicitly minimized and thus the resulting estimates correspond to the conditional mean of the potential rating a user might give to an item. However they do not provide any information on the uncertainty and the confidence of the Recommendation. We introduce a novel Matrix Factorization algorithm that estimates the conditional quantiles of the ratings. Experimental results demonstrate that the introduced model performs well and can potentially be a very useful tool in Recommender Engines by providing a direct measure of the quality of the prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bell, R., Koren, Y., Volinsky, C.: The bellkor solution to the neflix prize. Technical report, AT&T Labs (2007)

    Google Scholar 

  2. Ries, S.: Extending bayesian trust models regarding context-dependence and user friendly representation. In: Proc. of the 2009 ACM Symposium on Applied Computing. ACM, New York (2009)

    Google Scholar 

  3. Koenker, R., Hallock, K.: Quantile regression. Journal of Economic Perspectives 15(4), 143–156 (2001)

    Article  Google Scholar 

  4. Takeuchi, I., Le, Q.V., Sears, T.D., Smola, A.J.: Nonparametric quantile regression. Journal of Machine Learning Research 7, 1231–1264 (2006)

    Google Scholar 

  5. Amatriain, X., Pujol, J.M., Oliver, N.: I like it... i like it not: Evaluating user rating noise in recommender systems. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 247–258. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Srebro, N., Rennie, J., Jaakkola, T.: Maximum-margin matrix factorization. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17 NIPS. MIT Press, Cambridge (2005)

    Google Scholar 

  7. Hoffman, T.: Latent semantic models for collaborative filtering. ACM Transactions on Information Systems (TOIS) 22(1), 89–115 (2004)

    Article  Google Scholar 

  8. Takacs, G., Pilaszy, I., Nemeth, B., Tikk, D.: Scalable collaborative filtering approaches for large recommender systems. Journal of Machine Learning Research 10, 623–656 (2009)

    Google Scholar 

  9. Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). ACM Press, New York (2009)

    Google Scholar 

  10. Srebro, N., Jaakkola, T.: Weighted low-rank approximations. In: Proceedings of the 20th International Conference on Machine Learning ICML, pp. 720–727. AAAI Press, Menlo Park (2003)

    Google Scholar 

  11. Rennie, J., Srebro, N.: Fast maximum margin matrix factorization for collaborative prediction. In: Proc. of the 22nd International Conference on Machine Learning ICML (2005)

    Google Scholar 

  12. Srebro, N., Shraibman, A.: Rank, trace-norm and max-norm. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 545–560. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Advances in Neural Information Processing Systems 20 NIPS. MIT Press, Cambridge (2008)

    Google Scholar 

  14. Abernethy, J., Bach, F., Evgeniou, T., Vert, J.P.: A new approach to collaborative filtering: Operator estimation with spectral regularization. Journal of Machine Learning Research 10, 803–826 (2009)

    Google Scholar 

  15. Agarwall, D., Chen, B.C.: Regression-based latend factor models. In: Proceedings of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). ACM Press, New York (2009)

    Google Scholar 

  16. Bell, R., Koren, Y.: Improved neighborhood based collaborative filtering. In: The Netflix-KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition. ACM Press, New York (2007)

    Google Scholar 

  17. Potter, G.: Putting the collaborator back into collaborative filtering. In: The 2nd-Netflix-KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition. ACM Press, New York (2008)

    Google Scholar 

  18. Pilaszy, I., Tikk, D.: Recommending new movies: Even a few ratings are more valuable then metadata. In: Proceedings of the 3rd ACM International Conference on Recommender Systems (RecSys). ACM Press, New York (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karatzoglou, A., Weimer, M. (2010). Quantile Matrix Factorization for Collaborative Filtering. In: Buccafurri, F., Semeraro, G. (eds) E-Commerce and Web Technologies. EC-Web 2010. Lecture Notes in Business Information Processing, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15208-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15208-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15207-8

  • Online ISBN: 978-3-642-15208-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics