iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-13509-5_22
Verifying a Parameterized Border Array in O(n 1.5) Time | SpringerLink
Skip to main content

Verifying a Parameterized Border Array in O(n 1.5) Time

  • Conference paper
Combinatorial Pattern Matching (CPM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6129))

Included in the following conference series:

Abstract

The parameterized pattern matching problem is to check if there exists a renaming bijection on the alphabet with which a given pattern can be transformed into a substring of a given text. A parameterized border array (p-border array) is a parameterized version of a standard border array, and we can efficiently solve the parameterized pattern matching problem using p-border arrays. In this paper we present an O(n 1.5)-time O(n)-space algorithm to verify if a given integer array of length n is a valid p-border array for an unbounded alphabet. The best previously known solution takes time proportional to the n-th Bell number \(\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!}\), and hence our algorithm is quite efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, B.S.: Parameterized pattern matching: Algorithms and applications. Journal of Computer and System Sciences 52(1), 28–42 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized matching. Information Processing Letters 49(3), 111–115 (1994)

    Article  MATH  Google Scholar 

  3. Kosaraju, S.: Faster algorithms for the construction of parameterized suffix trees. In: Proc. FOCS 1995, pp. 631–637 (1995)

    Google Scholar 

  4. Hazay, C., Lewenstein, M., Sokol, D.: Approximate parameterized matching. ACM Transactions on Algorithms 3(3), Article No. 29 (2007)

    Google Scholar 

  5. Apostolico, A., Erdös, P.L., Lewenstein, M.: Parameterized matching with mismatches. Journal of Discrete Algorithms 5(1), 135–140 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. I, T., Deguchi, S., Bannai, H., Inenaga, S., Takeda, M.: Lightweight parameterized suffix array construction. In: Proc. IWOCA, pp. 312–323 (2009)

    Google Scholar 

  7. Idury, R.M., Schäffer, A.A.: Multiple matching of parameterized patterns. Theoretical Computer Science 154(2), 203–224 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Morris, J.H., Pratt, V.R.: A linear pattern-matching algorithm. Technical Report 40, University of California, Berkeley (1970)

    Google Scholar 

  9. I, T., Inenaga, S., Bannai, H., Takeda, M.: Counting parameterized border arrays for a binary alphabet. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 422–433. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Franek, F., Gao, S., Lu, W., Ryan, P.J., Smyth, W.F., Sun, Y., Yang, L.: Verifying a border array in linear time. J. Comb. Math. and Comb. Comp. 42, 223–236 (2002)

    MATH  MathSciNet  Google Scholar 

  11. Duval, J.P., Lecroq, T., Lefevre, A.: Border array on bounded alphabet. Journal of Automata, Languages and Combinatorics 10(1), 51–60 (2005)

    MATH  MathSciNet  Google Scholar 

  12. Duval, J.P., Lefebvre, A.: Words over an ordered alphabet and suffix permutations. Theoretical Informatics and Applications 36, 249–259 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M.: Inferring strings from graphs and arrays. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 208–217. Springer, Heidelberg (2003)

    Google Scholar 

  14. Schürmann, K.B., Stoye, J.: Counting suffix arrays and strings. Theoretical Computer Science 395(2-1), 220–234 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Clément, J., Crochemore, M., Rindone, G.: Reverse engineering prefix tables. In: Proc. STACS 2009, pp. 289–300 (2009)

    Google Scholar 

  16. Duval, J.P., Lecroq, T., Lefebvre, A.: Efficient validation and construction of border arrays and validation of string matching automata. RAIRO - Theoretical Informatics and Applications 43(2), 281–297 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gawrychowski, P., Jez, A., Jez, L.: Validating the Knuth-Morris-Pratt failure function, fast and online. In: Proc. CSR 2010 (to appear 2010)

    Google Scholar 

  18. Crochemore, M., Iliopoulos, C., Pissis, S., Tischler, G.: Cover array string reconstruction. In: Proc. CPM 2010 (to appear 2010)

    Google Scholar 

  19. Moore, D., Smyth, W., Miller, D.: Counting distinct strings. Algorithmica 23(1), 1–13 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

I., T., Inenaga, S., Bannai, H., Takeda, M. (2010). Verifying a Parameterized Border Array in O(n 1.5) Time. In: Amir, A., Parida, L. (eds) Combinatorial Pattern Matching. CPM 2010. Lecture Notes in Computer Science, vol 6129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13509-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13509-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13508-8

  • Online ISBN: 978-3-642-13509-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics