Abstract
The parameterized pattern matching problem is to check if there exists a renaming bijection on the alphabet with which a given pattern can be transformed into a substring of a given text. A parameterized border array (p-border array) is a parameterized version of a standard border array, and we can efficiently solve the parameterized pattern matching problem using p-border arrays. In this paper we present an O(n 1.5)-time O(n)-space algorithm to verify if a given integer array of length n is a valid p-border array for an unbounded alphabet. The best previously known solution takes time proportional to the n-th Bell number \(\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!}\), and hence our algorithm is quite efficient.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baker, B.S.: Parameterized pattern matching: Algorithms and applications. Journal of Computer and System Sciences 52(1), 28–42 (1996)
Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized matching. Information Processing Letters 49(3), 111–115 (1994)
Kosaraju, S.: Faster algorithms for the construction of parameterized suffix trees. In: Proc. FOCS 1995, pp. 631–637 (1995)
Hazay, C., Lewenstein, M., Sokol, D.: Approximate parameterized matching. ACM Transactions on Algorithms 3(3), Article No. 29 (2007)
Apostolico, A., Erdös, P.L., Lewenstein, M.: Parameterized matching with mismatches. Journal of Discrete Algorithms 5(1), 135–140 (2007)
I, T., Deguchi, S., Bannai, H., Inenaga, S., Takeda, M.: Lightweight parameterized suffix array construction. In: Proc. IWOCA, pp. 312–323 (2009)
Idury, R.M., Schäffer, A.A.: Multiple matching of parameterized patterns. Theoretical Computer Science 154(2), 203–224 (1996)
Morris, J.H., Pratt, V.R.: A linear pattern-matching algorithm. Technical Report 40, University of California, Berkeley (1970)
I, T., Inenaga, S., Bannai, H., Takeda, M.: Counting parameterized border arrays for a binary alphabet. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 422–433. Springer, Heidelberg (2009)
Franek, F., Gao, S., Lu, W., Ryan, P.J., Smyth, W.F., Sun, Y., Yang, L.: Verifying a border array in linear time. J. Comb. Math. and Comb. Comp. 42, 223–236 (2002)
Duval, J.P., Lecroq, T., Lefevre, A.: Border array on bounded alphabet. Journal of Automata, Languages and Combinatorics 10(1), 51–60 (2005)
Duval, J.P., Lefebvre, A.: Words over an ordered alphabet and suffix permutations. Theoretical Informatics and Applications 36, 249–259 (2002)
Bannai, H., Inenaga, S., Shinohara, A., Takeda, M.: Inferring strings from graphs and arrays. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 208–217. Springer, Heidelberg (2003)
Schürmann, K.B., Stoye, J.: Counting suffix arrays and strings. Theoretical Computer Science 395(2-1), 220–234 (2008)
Clément, J., Crochemore, M., Rindone, G.: Reverse engineering prefix tables. In: Proc. STACS 2009, pp. 289–300 (2009)
Duval, J.P., Lecroq, T., Lefebvre, A.: Efficient validation and construction of border arrays and validation of string matching automata. RAIRO - Theoretical Informatics and Applications 43(2), 281–297 (2009)
Gawrychowski, P., Jez, A., Jez, L.: Validating the Knuth-Morris-Pratt failure function, fast and online. In: Proc. CSR 2010 (to appear 2010)
Crochemore, M., Iliopoulos, C., Pissis, S., Tischler, G.: Cover array string reconstruction. In: Proc. CPM 2010 (to appear 2010)
Moore, D., Smyth, W., Miller, D.: Counting distinct strings. Algorithmica 23(1), 1–13 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
I., T., Inenaga, S., Bannai, H., Takeda, M. (2010). Verifying a Parameterized Border Array in O(n 1.5) Time. In: Amir, A., Parida, L. (eds) Combinatorial Pattern Matching. CPM 2010. Lecture Notes in Computer Science, vol 6129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13509-5_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-13509-5_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13508-8
Online ISBN: 978-3-642-13509-5
eBook Packages: Computer ScienceComputer Science (R0)