iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-13495-1_28
Research on the Ant Colony Optimization Algorithm with Multi-population Hierarchy Evolution | SpringerLink
Skip to main content

Research on the Ant Colony Optimization Algorithm with Multi-population Hierarchy Evolution

  • Conference paper
Advances in Swarm Intelligence (ICSI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6145))

Included in the following conference series:

  • 3736 Accesses

Abstract

The ant colony algorithm (ACA) is a novel simulated evolutionary algorithm which is based on observations to behavior of some ant species. Because of the use of positive feedback mechanism, ACA has stronger robustness, better distributed computer system and easier to combine with other algorithms. However, it also has the flaws, for example mature and halting. This paper presents an optimization algorithm by used of multi-population hierarchy evolution. Each sub-population that is entrusted to different control achieves respectively a different search independently. Then, for the purpose of sharing information, the outstanding individuals are migrated regularly between the populations. The algorithm improves the parallelism and the ability of global optimization by the method. At the same time, according to the convex hull theory in geometry, the crossing point of the path is eliminated. Taking advantage of the common TSPLIB in international databases, lots of experiments are carried out. It is verified that the optimization algorithm effectively improves the convergence rate and the accuracy of reconciliation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, H., Shi, Z.: An Ant Colony Algorithm Based on Orientation Factor for QoS Multicast Routing in Ad Hoc Networks. In: Third International Conference on Communications and Networking in China, pp. 321–326 (2008)

    Google Scholar 

  2. Lezcano, C., Pinto, D., Barán, B.: Team Algorithms Based on Ant Colony Optimization – A New Multi-Objective Optimization Approach. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 773–783. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Zhang, C.-j., He, G., Liang, S.-h.: Test Point Selection of Analog Circuits Based on Fuzzy Theory and Ant Colony Algorithm. In: IEEE AUTOTESTCON 2008, Salt Lake City, UT, pp. 164–168 (2008)

    Google Scholar 

  4. Li, W., Han, Z.-h., Li, F.: Clustering Analysis of Power Load Forecasting based on Improved Ant Colony Algorithm. In: Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, pp. 7492–7495 (2008)

    Google Scholar 

  5. Gao, M., Xu, J., Tian, J.: Mobile Robot Global Path Planning Based on Improved Augment Ant Colony Algorithm. In: Second International Conference on Genetic and Evolutionary Computing, pp. 273–276 (2008)

    Google Scholar 

  6. Dorigo, M., Gambardella, L.M.: A study of some properties of Ant-Q. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 656–665. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  7. Thomas, S., Holger, H.H.: MAX-MIN ant system. Future Generation Computer Systems, 889–914 (2000)

    Google Scholar 

  8. Laura Cruz, R., Juan, J., Gonzalez, B., Orta, J.F.D., et al.: A new approach to improve the ant colony system performance: Learning levels. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 670–677. Springer, Heidelberg (2009)

    Google Scholar 

  9. Li, Z., Wang, Y., et al.: A Novel Cloud-based Fuzzy Self-adaptive Ant Colony System. In: Fourth International Conference on Natural Computation, pp. 460–465 (2008)

    Google Scholar 

  10. Xin, Z., Yu-zhong, Z., Ping, F.: An Improved Ant Colony Algorithm. MultiMedia and Information Technology, 98–100 (2008)

    Google Scholar 

  11. Nonsiri, S., Supratid, S.: Modifying Ant Colony Optimization. In: IEEE Conference on Soft Computing in Industrial Applications, Japan, pp. 95–100 (2008)

    Google Scholar 

  12. Colorni, A., Dorigo, M., Maniezzo, V., et al.: Distributed optimization by ant colonies. In: Proceedings of the 1st European Conference on Artificial Life, pp. 134–142 (1991)

    Google Scholar 

  13. Dorigo, M., Caro, G.D., Gambardella, L.M.: Ant algorithms for discrete optimization. Artificial Life, 137–172 (1999)

    Google Scholar 

  14. Chang-chun, D., Ru-ming, Z., Yong-xia, L., Bo, X.: A Multi-Group Parallel Genetic Algorithm for TSP. Computer Simulation, 187–190 (2008)

    Google Scholar 

  15. Liu, X.-j., Huang, G.-l., Lin, Z.-x., Guo, W.-h.: Interaction Force Coefficients Estimation of Ship Maneuvering Based on Multi-Population Genetic Algorithm. Journal Of Shanghai Jiaotong University, 945–948 (2008)

    Google Scholar 

  16. Zhang, X., Tang, L.: A New Hybrid Ant Colony Optimization Algorithm for the Traveling Salesman Problem. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS (LNAI), vol. 5227, pp. 148–155. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, X., Ni, J., Wan, W. (2010). Research on the Ant Colony Optimization Algorithm with Multi-population Hierarchy Evolution. In: Tan, Y., Shi, Y., Tan, K.C. (eds) Advances in Swarm Intelligence. ICSI 2010. Lecture Notes in Computer Science, vol 6145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13495-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13495-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13494-4

  • Online ISBN: 978-3-642-13495-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics