Abstract
We present a scene understanding strategy for video sequences based on clustering object trajectories. In this chapter, we discuss a set of relevant feature spaces for trajectory representation and we critically analyze their relative merits. Next, we examine various trajectory clustering methods that can be employed to learn activity models, based on their classification into hierarchical and partitional algorithms. In particular, we focus on parametric and non-parametric partitional algorithms and discuss the limitations of existing approaches. To overcome the limitations of state-of-the-art approaches we present a soft partitional algorithm based on non-parametric Mean-shift clustering. The proposed algorithm is validated on real datasets and compared with state-of-the-art approaches, based on objective evaluation metrics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Morris, B.T., Trivedi, M.M.: A survey of vision-based trajectory learning and analysis for surveillance. IEEE Trans. on Circuits and Systems for Video Technology 18(8), 1114–1127 (2008)
Brand, M., Oliver, N., Pentland, A.: Coupled hidden markov models for complex action recognition. In: Proc. of IEEE Int’l. Conf. on Computer Vision and Pattern Recognition (CVPR), San Juan, Puerto Rico (June 1997)
Porikli, F.: Trajectory pattern detection by HMM parameter space features and eigenvector clustering. In: Proc. of 8th European Conf. on Computer Vision (ECCV), Prague, Czech Republic (May 2004)
Wilson, A.D., Bobick, A.F.: Recognition and interpretation of parametric gesture. In: Proc. of IEEE 6th Intl. Conf. on Computer Vision, Bombay, India (January 1998)
Oliver, N., Rosario, B., Pentland, A.: A bayesian computer vision system for modeling human interactions. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(8), 831–843 (2000)
Chudova, D., Gaffney, S., Smyth, P.: Probabilistic models for joint clustering and time warping of multi-dimensional curves. In: Proc. of 19th Conf. on Uncertainty in Artificial Intelligence, Acapulco, Mexico (August 2003)
Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: Proc. of Intl. Conf. on Knowledge Discovery and Data Mining, San Diego, CA, USA (August 1999)
Ma, X., Schonfeld, D., Khokhar, A.: Video event classification and image segmentation based on non-causal multi-dimensional hidden markov models. IEEE Trans. on Image Processing 18(6), 1304–1313 (2009)
Alon, J., Sclaroff, S., Kollios, G., Pavlovic, V.: Discovering clusters in motion time-series data. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Madison, Wisconsin (June 2003)
Song, G., Martynovich, P.: A study of hmm-based bandwidth extension of speech signals. Elsevier Journal of Signal Processing 89(10), 2036–2044 (2009)
Bashir, F., Khokhar, A., Schonfeld, D.: Real-time motion trajectory-based indexing and retrieval of video sequences. IEEE Trans. on Multimedia 9(1), 58–65 (2007)
Bashir, F., Khokhar, A., Schonfeld, D.: Segmented trajectory based indexing and retrieval of video data. In: Proc. of Intl. Conf. on Image Processing (ICIP), Barcelona, Catalonia, Spain (September 2003)
Li, X., Hu, W., Hu, W.: A coarse-to-fine strategy for vehicle motion trajectory clustering. In: Proc. of Intl. Conf. on Pattern Recognition (ICPR), Hong Kong, China (August 2006)
Antonini, G., Thiran, J.: Counting pedestrians in video sequences using trajectory clustering. IEEE Trans. on Circuit and Systems for Video Technology 16(8), 1008–1020 (2006)
Hu, W., Xie, D., Tan, T., Maybank, S.: Learning activity patterns using fuzzy self-organizing neural network. IEEE Trans. on Systems, Man and Cybernetics, Part B 34(3), 334–352 (2004)
Anjum, N., Cavallaro, A.: Multi-feature object trajectory clustering for video analysis. IEEE Trans. on Circuits and Systems for Video Technology 18(11), 1555–1564 (2008)
Sumpter, N., Bulpitt, A.J.: Learning spatio-temporal patterns for predicting object behaviour. In: Proc. of British Conf. on Machine Vision, Southampton, UK (September 1998)
Khalid, S., Naftel, A.: Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space. In: Proc. of third ACM Intl. workshop on Video Surveillance and Sensor Networks, Singapore (September 2005)
Bashir, F., Khokhar, A., Schonfeld, D.: Object trajectory-based activity classification and recognition using hidden markov models. IEEE Trans. on Image Processing 16(7), 1912–1919 (2007)
Amasyali, F., Albayrak, S.: Fuzzy c-means clustering on medical diagnostic systems. In: Proc. of Intl. Twelfth Turkish Symp. on Artificial Intelligence and Neural Networks (TAINN 2003), Canakkale, Turkey (July 2003)
Naftel, A., Khalid, S.: Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space. Trans. on Multimedia Systems 12(3), 227–238 (2006)
Fu, Z., Hu, W., Tan, T.: Similarity based vehicle trajectory clustering and anomaly detection. In: Proc. of IEEE Intl. Conf. on Image Processing, ICIP, Genova, Italy (September 2005)
Frigui, H., Krishnapuram, R.: A robust competitive clustering algorithm with applications in computer vision. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(5), 450–465 (1999)
Wilson, H., Boots, B., Millward, A.: A comparison of hierarchical and partitional clustering techniques for multispectral image classification. In: Proc. of IEEE Intl. Geoscience and Remote Sensing Symp (IGARSS), Toronto, Canada (June 2002)
Buzan, D., Sclaroff, S., Kollios, G.: Extraction and clustering of motion trajectories in video. In: Proc. of IEEE Intl. Conf. on Pattern Recognition (ICPR), Cambridge, UK (August 2004)
Li, M., Wu, C., Han, Z., Yue, Y.: A hierarchical clustering method for attribute discretization in rough set theory. In: Proc. of Intl. Conf. on Machine Learning and Cybernetics, Shanghai, China (August 2004)
Biliotti, D., Antonini, G., Thiran, J.: Multi-layer hierarchical clustering of pedestrian trajectories for automatic counting of people in video sequences. In: Proc. of IEEE Workshop on Motion and Video Computing, Colorado, USA (January 2005)
Jain, A.K., Murty, M.N., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)
Melo, J., Naftel, A., Bernardino, A., Victor, J.: Retrieval of vehicle trajectories and estimation of lane geometry using non-stationary traffic surveillance cameras. In: Proc. of Advanced Concepts for Intelligent Vision Systems (ACIVS), Brussels, Belgium (August 2004)
Seber, G.A.F.: Multivariate Observations. Wiley, New York (1984)
Wang, X., Ma, K.T., Ng, G.W., Grimson, W.E.L.: Trajectory analysis and semantic region modeling using a nonparametric bayesian model. In: Proc. of IEEE Intl. Conf. on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA (June 2008)
Kwok, T., Smith, R., Lozano, S., Taniar, D.: Parallel fuzzy c-means clustering for large data sets. In: Proc. of 8th Intl. Euro-Par Conf. on Parallel Processing, Paderborn, Germany (August 2002)
Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(5), 603 (2002)
Comaniciu, D., Meer, P.: Distribution free decomposition of multivariate data. IEEE Trans. on Pattern Analanlysis and Applications 2(1), 22–30 (1999)
Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean shift and data-driven scale selection. In: Proc. of IEEE Int’l. Conf. on Computer Vision (ICCV), Vancouver, Canada (July 2001)
Wang, H., Suter, D.: False-peaks-avoiding mean shift method for unsupervised peak-valley sliding image segmentation. In: Proc. of Intl. Conf. on Digital Image Computing: Techniques and Applications (DICTA), Sydney, Australia (December 2003)
Zhou, Y., Yan, S., Huang, T.: Detecting anomaly in videos from trajectory similarity analysis. In: Proc. of Intl. Conf. on Multimedia and Expo., Beijing, China (July 2007)
Kasturi, R.: Performance evaluation protocol for face, person and vehicle detection & tracking in video analysis and content extraction, vace-ii (January 2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Anjum, N., Cavallaro, A. (2010). Trajectory Clustering for Scene Context Learning and Outlier Detection. In: Schonfeld, D., Shan, C., Tao, D., Wang, L. (eds) Video Search and Mining. Studies in Computational Intelligence, vol 287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12900-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-12900-1_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12899-8
Online ISBN: 978-3-642-12900-1
eBook Packages: EngineeringEngineering (R0)