iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-12900-1_2
Trajectory Clustering for Scene Context Learning and Outlier Detection | SpringerLink
Skip to main content

Trajectory Clustering for Scene Context Learning and Outlier Detection

  • Chapter
Video Search and Mining

Part of the book series: Studies in Computational Intelligence ((SCI,volume 287))

Abstract

We present a scene understanding strategy for video sequences based on clustering object trajectories. In this chapter, we discuss a set of relevant feature spaces for trajectory representation and we critically analyze their relative merits. Next, we examine various trajectory clustering methods that can be employed to learn activity models, based on their classification into hierarchical and partitional algorithms. In particular, we focus on parametric and non-parametric partitional algorithms and discuss the limitations of existing approaches. To overcome the limitations of state-of-the-art approaches we present a soft partitional algorithm based on non-parametric Mean-shift clustering. The proposed algorithm is validated on real datasets and compared with state-of-the-art approaches, based on objective evaluation metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Morris, B.T., Trivedi, M.M.: A survey of vision-based trajectory learning and analysis for surveillance. IEEE Trans. on Circuits and Systems for Video Technology 18(8), 1114–1127 (2008)

    Article  Google Scholar 

  2. Brand, M., Oliver, N., Pentland, A.: Coupled hidden markov models for complex action recognition. In: Proc. of IEEE Int’l. Conf. on Computer Vision and Pattern Recognition (CVPR), San Juan, Puerto Rico (June 1997)

    Google Scholar 

  3. Porikli, F.: Trajectory pattern detection by HMM parameter space features and eigenvector clustering. In: Proc. of 8th European Conf. on Computer Vision (ECCV), Prague, Czech Republic (May 2004)

    Google Scholar 

  4. Wilson, A.D., Bobick, A.F.: Recognition and interpretation of parametric gesture. In: Proc. of IEEE 6th Intl. Conf. on Computer Vision, Bombay, India (January 1998)

    Google Scholar 

  5. Oliver, N., Rosario, B., Pentland, A.: A bayesian computer vision system for modeling human interactions. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(8), 831–843 (2000)

    Article  Google Scholar 

  6. Chudova, D., Gaffney, S., Smyth, P.: Probabilistic models for joint clustering and time warping of multi-dimensional curves. In: Proc. of 19th Conf. on Uncertainty in Artificial Intelligence, Acapulco, Mexico (August 2003)

    Google Scholar 

  7. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: Proc. of Intl. Conf. on Knowledge Discovery and Data Mining, San Diego, CA, USA (August 1999)

    Google Scholar 

  8. Ma, X., Schonfeld, D., Khokhar, A.: Video event classification and image segmentation based on non-causal multi-dimensional hidden markov models. IEEE Trans. on Image Processing 18(6), 1304–1313 (2009)

    Article  Google Scholar 

  9. Alon, J., Sclaroff, S., Kollios, G., Pavlovic, V.: Discovering clusters in motion time-series data. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Madison, Wisconsin (June 2003)

    Google Scholar 

  10. Song, G., Martynovich, P.: A study of hmm-based bandwidth extension of speech signals. Elsevier Journal of Signal Processing 89(10), 2036–2044 (2009)

    MATH  Google Scholar 

  11. Bashir, F., Khokhar, A., Schonfeld, D.: Real-time motion trajectory-based indexing and retrieval of video sequences. IEEE Trans. on Multimedia 9(1), 58–65 (2007)

    Article  Google Scholar 

  12. Bashir, F., Khokhar, A., Schonfeld, D.: Segmented trajectory based indexing and retrieval of video data. In: Proc. of Intl. Conf. on Image Processing (ICIP), Barcelona, Catalonia, Spain (September 2003)

    Google Scholar 

  13. Li, X., Hu, W., Hu, W.: A coarse-to-fine strategy for vehicle motion trajectory clustering. In: Proc. of Intl. Conf. on Pattern Recognition (ICPR), Hong Kong, China (August 2006)

    Google Scholar 

  14. Antonini, G., Thiran, J.: Counting pedestrians in video sequences using trajectory clustering. IEEE Trans. on Circuit and Systems for Video Technology 16(8), 1008–1020 (2006)

    Article  Google Scholar 

  15. Hu, W., Xie, D., Tan, T., Maybank, S.: Learning activity patterns using fuzzy self-organizing neural network. IEEE Trans. on Systems, Man and Cybernetics, Part B 34(3), 334–352 (2004)

    Article  Google Scholar 

  16. Anjum, N., Cavallaro, A.: Multi-feature object trajectory clustering for video analysis. IEEE Trans. on Circuits and Systems for Video Technology 18(11), 1555–1564 (2008)

    Article  Google Scholar 

  17. Sumpter, N., Bulpitt, A.J.: Learning spatio-temporal patterns for predicting object behaviour. In: Proc. of British Conf. on Machine Vision, Southampton, UK (September 1998)

    Google Scholar 

  18. Khalid, S., Naftel, A.: Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space. In: Proc. of third ACM Intl. workshop on Video Surveillance and Sensor Networks, Singapore (September 2005)

    Google Scholar 

  19. Bashir, F., Khokhar, A., Schonfeld, D.: Object trajectory-based activity classification and recognition using hidden markov models. IEEE Trans. on Image Processing 16(7), 1912–1919 (2007)

    Article  MathSciNet  Google Scholar 

  20. Amasyali, F., Albayrak, S.: Fuzzy c-means clustering on medical diagnostic systems. In: Proc. of Intl. Twelfth Turkish Symp. on Artificial Intelligence and Neural Networks (TAINN 2003), Canakkale, Turkey (July 2003)

    Google Scholar 

  21. Naftel, A., Khalid, S.: Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space. Trans. on Multimedia Systems 12(3), 227–238 (2006)

    Article  Google Scholar 

  22. Fu, Z., Hu, W., Tan, T.: Similarity based vehicle trajectory clustering and anomaly detection. In: Proc. of IEEE Intl. Conf. on Image Processing, ICIP, Genova, Italy (September 2005)

    Google Scholar 

  23. Frigui, H., Krishnapuram, R.: A robust competitive clustering algorithm with applications in computer vision. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(5), 450–465 (1999)

    Article  Google Scholar 

  24. Wilson, H., Boots, B., Millward, A.: A comparison of hierarchical and partitional clustering techniques for multispectral image classification. In: Proc. of IEEE Intl. Geoscience and Remote Sensing Symp (IGARSS), Toronto, Canada (June 2002)

    Google Scholar 

  25. Buzan, D., Sclaroff, S., Kollios, G.: Extraction and clustering of motion trajectories in video. In: Proc. of IEEE Intl. Conf. on Pattern Recognition (ICPR), Cambridge, UK (August 2004)

    Google Scholar 

  26. Li, M., Wu, C., Han, Z., Yue, Y.: A hierarchical clustering method for attribute discretization in rough set theory. In: Proc. of Intl. Conf. on Machine Learning and Cybernetics, Shanghai, China (August 2004)

    Google Scholar 

  27. Biliotti, D., Antonini, G., Thiran, J.: Multi-layer hierarchical clustering of pedestrian trajectories for automatic counting of people in video sequences. In: Proc. of IEEE Workshop on Motion and Video Computing, Colorado, USA (January 2005)

    Google Scholar 

  28. Jain, A.K., Murty, M.N., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  29. Melo, J., Naftel, A., Bernardino, A., Victor, J.: Retrieval of vehicle trajectories and estimation of lane geometry using non-stationary traffic surveillance cameras. In: Proc. of Advanced Concepts for Intelligent Vision Systems (ACIVS), Brussels, Belgium (August 2004)

    Google Scholar 

  30. Seber, G.A.F.: Multivariate Observations. Wiley, New York (1984)

    Book  MATH  Google Scholar 

  31. Wang, X., Ma, K.T., Ng, G.W., Grimson, W.E.L.: Trajectory analysis and semantic region modeling using a nonparametric bayesian model. In: Proc. of IEEE Intl. Conf. on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA (June 2008)

    Google Scholar 

  32. Kwok, T., Smith, R., Lozano, S., Taniar, D.: Parallel fuzzy c-means clustering for large data sets. In: Proc. of 8th Intl. Euro-Par Conf. on Parallel Processing, Paderborn, Germany (August 2002)

    Google Scholar 

  33. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(5), 603 (2002)

    Article  Google Scholar 

  34. Comaniciu, D., Meer, P.: Distribution free decomposition of multivariate data. IEEE Trans. on Pattern Analanlysis and Applications 2(1), 22–30 (1999)

    Article  MATH  Google Scholar 

  35. Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean shift and data-driven scale selection. In: Proc. of IEEE Int’l. Conf. on Computer Vision (ICCV), Vancouver, Canada (July 2001)

    Google Scholar 

  36. Wang, H., Suter, D.: False-peaks-avoiding mean shift method for unsupervised peak-valley sliding image segmentation. In: Proc. of Intl. Conf. on Digital Image Computing: Techniques and Applications (DICTA), Sydney, Australia (December 2003)

    Google Scholar 

  37. Zhou, Y., Yan, S., Huang, T.: Detecting anomaly in videos from trajectory similarity analysis. In: Proc. of Intl. Conf. on Multimedia and Expo., Beijing, China (July 2007)

    Google Scholar 

  38. Kasturi, R.: Performance evaluation protocol for face, person and vehicle detection & tracking in video analysis and content extraction, vace-ii (January 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anjum, N., Cavallaro, A. (2010). Trajectory Clustering for Scene Context Learning and Outlier Detection. In: Schonfeld, D., Shan, C., Tao, D., Wang, L. (eds) Video Search and Mining. Studies in Computational Intelligence, vol 287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12900-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12900-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12899-8

  • Online ISBN: 978-3-642-12900-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics