iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-12101-2_32
A Multiple Combining Method for Optimizing Dissimilarity-Based Classification | SpringerLink
Skip to main content

A Multiple Combining Method for Optimizing Dissimilarity-Based Classification

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5991))

Included in the following conference series:

  • 2047 Accesses

Abstract

This paper reports an experimental study on a multiple combining method for optimizing dissimilarity-based classifications (DBCs) by simultaneously using a dynamic time warping (DTW) and a multiple fusion strategy (MFS). DBCs are a way of defining classifiers among classes; they are not based on the feature measurements of individual samples, but rather on a suitable dissimilarity measure among the samples. In DTW, the dissimilarity is measured in two steps: first, we adjust the object samples by finding the best warping path with a correlation coefficient-based DTW technique. We then compute the dissimilarity distance between the adjusted objects with conventional measures. In MFS, fusion strategies are repeatedly used in generating dissimilarity matrices as well as in designing classifiers: we first combine the dissimilarity matrices obtained with the DTW technique to a new matrix. After training some base classifiers in the new matrix, we again combine the results of the base classifiers. Our experimental results for well-known benchmark databases demonstrate that the proposed mechanism works well and achieves further improved results in terms of the classification accuracy compared with the previous approaches.

This work was supported by the National Research Foundation of Korea funded by the Korean Government (NRF-2009-0071283). The second author is with Department of Computer Science and Engineering (Pattern Recognition Lab.), Myongji University, as a research assistant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adini, Y., Moses, Y., Ullman, S.: Face recognition: the problem of compensating for changes in illumination direction. IEEE Trans. Pattern Anal. and Machine Intell. 19(7), 721–732 (1997)

    Article  Google Scholar 

  2. Kim, J., Fessler, J.A.: Intensity-based image registration using robust correlation coefficients. IEEE Trans. Medical Imaging 23(11), 1430–1444 (2004)

    Article  Google Scholar 

  3. Kim, S.-W., Duin, R.P.W.: On optimizing dissimilarity-based classifier using multi-level fusion strategies. Journal of Institute of Electronics Engineers of Korea 45-CI(5), 15–24 (2008) (in Korean); A preliminary version of this paper was presented at the 20th Canadian Conference on Artificial Intelligence. LNCS (LNAI), vol. 4509, pp. 110–121. Springer, Heidelberg (2007)

    Google Scholar 

  4. Kim, S.-W., Gao, J.: A dynamic programming technique for optimizing dissimilarity-based classifiers. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 654–663. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Kim, S.-W., Oommen, B.J.: On using prototype reduction schemes to optimize dissimilarity-based classification. Pattern Recognition 40, 2946–2957 (2007)

    Article  MATH  Google Scholar 

  6. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. and Machine Intell. 20(3), 226–239 (1998)

    Article  Google Scholar 

  7. Kuncheva, L.I.: Combining Pattern Classifiers - Methods and Algorithms. John Wiley & Sons, Chichester (2004)

    Book  MATH  Google Scholar 

  8. Milton, J.S., Arnold, J.C.: Introduction to Probability and Statistics - Principles and Applications for Engineering and the Computer Sciences, pp. 157–164. McGraw-Hill, New York (1990)

    Google Scholar 

  9. Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition: Foundations and Applications. World Scientific Publishing, Singapore (2005)

    Book  MATH  Google Scholar 

  10. Pekalska, E., Duin, R.P.W., Paclik, P.: Prototype selection for dissimilarity-based classifiers. Pattern Recognition 39, 189–208 (2006)

    Article  MATH  Google Scholar 

  11. Pekalska, E., Paclik, P., Duin, R.P.W.: A generalized kernel approach to dissimilarity-based classification. Journal of Machine Learning Research 2(2), 175–211 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Qiao, Y., Yasuhara, M.: Affine invariant dynamic time warping and its application to online rotated handwriting recognition. In: Proc. of International Conference on Pattern Recognition, ICPR 2006 (2006)

    Google Scholar 

  13. Ratan, A.L., Grimson, W.E.L., Wells, W.M.: Object detection and localization by dynamic template warping. International Journal of Computer Vision 36(2), 131–147 (2000)

    Article  Google Scholar 

  14. Sahbi, H., Boujemaa, N.: Robust face recognition using dynamic space warping. In: Tistarelli, M., Bigun, J., Jain, A.K. (eds.) ECCV 2002. LNCS, vol. 2359, pp. 121–132. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Wang, L., Zhang, Y., Feng, J.: On the Euclidean distance of images. IEEE Trans. Pattern Anal. and Machine Intell. 27(8), 1334–1339 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, SW., Kim, S. (2010). A Multiple Combining Method for Optimizing Dissimilarity-Based Classification. In: Nguyen, N.T., Le, M.T., ÅšwiÄ…tek, J. (eds) Intelligent Information and Database Systems. ACIIDS 2010. Lecture Notes in Computer Science(), vol 5991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12101-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12101-2_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12100-5

  • Online ISBN: 978-3-642-12101-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics