Abstract
Given two comparative maps, that is two sequences of markers each representing a genome, the Maximal Strip Recovery problem (MSR) asks to extract a largest sequence of markers from each map such that the two extracted sequences are decomposable into non-overlapping strips (or synteny blocks). This aims at defining a robust set of synteny blocks between different species, which is a key to understand the evolution process since their last common ancestor. In this paper, we add a fundamental constraint to the initial problem, which expresses the biologically sustained need to bound the number of intermediate (non-selected) markers between two consecutive markers in a strip. We therefore introduce the problem δ-gap-MSR, where δ is a (usually small) non-negative integer that upper bounds the number of non-selected markers between two consecutive markers in a strip. Depending on the nature of the comparative maps (i.e., with or without duplicates), we show that δ-gap-MSR is NP-complete for any δ ≥ 1, and even APX-hard for any δ ≥ 2. We also provide two approximation algorithms, with ratio 1.8 for δ= 1, and ratio 4 for δ ≥ 2.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alimonti, P., Kann, V.: Hardness of approximating problems on cubic graphs. In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 288–298. Springer, Heidelberg (1997)
Bar-Yehuda, R., Halldórsson, M.M., Naor, J., Shachnai, H., Shapira, I.: Scheduling split intervals. SIAM J. Comput. 36(1), 1–15 (2006)
Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from comparative maps. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 319–327. Springer, Heidelberg (2008)
Choi, V., Zheng, C., Zhu, Q., Sankoff, D.: Algorithms for the extraction of synteny blocks from comparative maps. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 277–288. Springer, Heidelberg (2007)
Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory, Ser. B 28(3), 284–304 (1980)
Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)
Wang, L., Zhu, B.: On the tractability of maximal strip recovery. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 400–409. Springer, Heidelberg (2009)
Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from comparative maps in rearrangement analysis. IEEE/ACM Trans. Comput. Biology Bioinform. 4(4), 515–522 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bulteau, L., Fertin, G., Rusu, I. (2009). Maximal Strip Recovery Problem with Gaps: Hardness and Approximation Algorithms. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_72
Download citation
DOI: https://doi.org/10.1007/978-3-642-10631-6_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10630-9
Online ISBN: 978-3-642-10631-6
eBook Packages: Computer ScienceComputer Science (R0)