iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-10631-6_72
Maximal Strip Recovery Problem with Gaps: Hardness and Approximation Algorithms | SpringerLink
Skip to main content

Maximal Strip Recovery Problem with Gaps: Hardness and Approximation Algorithms

  • Conference paper
Algorithms and Computation (ISAAC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5878))

Included in the following conference series:

Abstract

Given two comparative maps, that is two sequences of markers each representing a genome, the Maximal Strip Recovery problem (MSR) asks to extract a largest sequence of markers from each map such that the two extracted sequences are decomposable into non-overlapping strips (or synteny blocks). This aims at defining a robust set of synteny blocks between different species, which is a key to understand the evolution process since their last common ancestor. In this paper, we add a fundamental constraint to the initial problem, which expresses the biologically sustained need to bound the number of intermediate (non-selected) markers between two consecutive markers in a strip. We therefore introduce the problem δ-gap-MSR, where δ is a (usually small) non-negative integer that upper bounds the number of non-selected markers between two consecutive markers in a strip. Depending on the nature of the comparative maps (i.e., with or without duplicates), we show that δ-gap-MSR is NP-complete for any δ ≥ 1, and even APX-hard for any δ ≥ 2. We also provide two approximation algorithms, with ratio 1.8 for δ= 1, and ratio 4 for δ ≥ 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alimonti, P., Kann, V.: Hardness of approximating problems on cubic graphs. In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 288–298. Springer, Heidelberg (1997)

    Google Scholar 

  2. Bar-Yehuda, R., Halldórsson, M.M., Naor, J., Shachnai, H., Shapira, I.: Scheduling split intervals. SIAM J. Comput. 36(1), 1–15 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from comparative maps. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 319–327. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Choi, V., Zheng, C., Zhu, Q., Sankoff, D.: Algorithms for the extraction of synteny blocks from comparative maps. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 277–288. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  6. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory, Ser. B 28(3), 284–304 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wang, L., Zhu, B.: On the tractability of maximal strip recovery. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 400–409. Springer, Heidelberg (2009)

    Google Scholar 

  9. Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from comparative maps in rearrangement analysis. IEEE/ACM Trans. Comput. Biology Bioinform. 4(4), 515–522 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bulteau, L., Fertin, G., Rusu, I. (2009). Maximal Strip Recovery Problem with Gaps: Hardness and Approximation Algorithms. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10631-6_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10630-9

  • Online ISBN: 978-3-642-10631-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics