iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-10470-1_9
Evaluating the Impact of Shape on Finite Element Simulations in a Medical Context | SpringerLink
Skip to main content

Evaluating the Impact of Shape on Finite Element Simulations in a Medical Context

  • Conference paper
Modelling the Physiological Human (3DPH 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5903))

Included in the following conference series:

Abstract

Competing concepts exist regarding surgery for instance of the cleft lip and palate to date. In order to support the surgeon to predict the possible outcome of a variety of the approaches a promising procedure are morphology-based finite element simulations at histological scale. It however can be a challenge to generate volume meshes that are applicable to the mathematical modeling of three-dimensional spatial modifications. In this study we discuss the variation of the segmentations by different anatomy experts with respect to shape, analyze the associated reconstructions by the finite element method and compare them among one another. The gist of the study is that an exact segmentation is fundamental precedent for a simulation and minor deviations in shape may arise deviations in a finite element simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Delaire, J.: Le cheilo-rhinoplastie primaire pour fente labiomaxillaire congenitale unilateral. Rev. Stomatol. 76, 193 (1975)

    Google Scholar 

  2. Millard, D.: Cleft craft: The evolution of it’s surgery. the unilateral deformity I (1976)

    Google Scholar 

  3. Randall, P., LaRossa, L.W.D.: The importance of muscle reconstruction in primary and secondary cleft lip repair. Plast. Reconstr. Surg. 64, 316–323 (1974)

    Google Scholar 

  4. Kriens, O.: An anatomical approach to veloplasty. Plast. Reconstr. Surg. 43, 29–41 (1969)

    Google Scholar 

  5. Sader, R., Zeilhofer, H., Dietz, M., Bressmann, T., Hannig, C., Putz, R., Horch, H.: Levatorplasty, a new technique to treat hypernasality: anatomical investigations and preliminary clinical results. J. Cranio-Maxillofac Surg. 29, 143–149 (2001)

    Article  Google Scholar 

  6. Latham, R., Deaton, T.: The structural basis of the philtrum and the contour of the vermilion border: a study of the musculature of the upper lip. J. Anat. 121, 151–160 (1976)

    Google Scholar 

  7. Mulliken, J., Pensler, J., Kozakewich, H.: The anatomy of cupid’s bow in normal and cleft lip. Plast. Reconstr. Surg. 92, 395–403 (1993)

    Article  Google Scholar 

  8. Bern, M., Plassmann, P.: Mesh generation. In: Handbook of Computational Geometry, pp. 291–332. Elsevier Science, Amsterdam (2000)

    Chapter  Google Scholar 

  9. George, P.L.: Automatic mesh generation. Application to Finite Element Methods (1991)

    Google Scholar 

  10. Frey, P.J.: Mesh generation. Hermes Science Europe Ltd (2000)

    Google Scholar 

  11. Landes, C.A., Weichert, F., Geis, P., Wernstedt, K., Wilde, A., Fritsch, H., Wagner, M.: Tissue-plastinated vs. celloidin-embedded large serial sections in video, analog and digital photographic on-screen reproduction: a preliminary step to exact virtual 3d modelling, exemplified in the normal midface and cleft-lip and palate. J. Anat. 207, 175–191 (2005)

    Article  Google Scholar 

  12. Sarfraz, M.: Object recognition using fourier descriptors: Some experiments and observations. In: International Conference on Computer Graphics, Imaging and Visualisation, pp. 281–286 (2006)

    Google Scholar 

  13. Müller, H., Klingert, A.: Surface interpolation from cross sections. In: Focus on Scientific Visualization, pp. 139–189. Springer, Heidelberg (1993)

    Google Scholar 

  14. Zhao, H.K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: IEEE Workshop on Variational and Level Set Methods (VLSM 2001), p. 194 (2001)

    Google Scholar 

  15. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences. Springer, Berlin (2002)

    Google Scholar 

  16. Shewchuk, J.: What is a good linear finite element? Interpolation, Conditioning, Anisotropy, and Quality Measures (2002)

    Google Scholar 

  17. Bridson, R., Teran, J., Molino, N., Fedkiw, R.: Adaptive physics based tetrahedral mesh generation using level sets. Engineering with Computers 21, 2–18 (2005)

    Article  Google Scholar 

  18. Martins, J.A.C., Pires, E.B., Salvado, R., Dinis, P.B.: A numerical model of passive and active behavior of skeletal muscles. Comput. Methods Appl. Mech. Eng. 151(3-4), 419–433 (1998)

    Article  MATH  Google Scholar 

  19. Martins, P., Natal Jorge, R., Ferreira, A.: A comparative study of several material models for prediction of hyperelastic properties: Application to silicone-rubber and soft tissues. Strain 42, 135–147 (2006)

    Article  Google Scholar 

  20. Van Loocke, M., Lyons, C., Simms, C.: The three-dimensional mechanical properties of skeletal muscle: Experiments and modelling. In: Prenderga. St., et al. (eds.) Topic in Bio-Mechanical Engineering, Trinity Centre for Bioengineering & National Centre for Biomedical Engineering Science (2004)

    Google Scholar 

  21. Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135(1-2), 107–128 (1996)

    Article  MATH  Google Scholar 

  22. Kikuchi, N., Oden, J.: Contact problems in elasticity: A study of variational inequalities and finite element methods. In: SIAM Studies in Applied Mathematics. SIAM, Society for Industrial and Applied Mathematics, Philadelphia (1988)

    Google Scholar 

  23. Le Tallec, P.: Numerical methods for nonlinear three-dimensional elasticity. In: Ciarlet, P.G., et al. (eds.) Handbook of numerical analysis. Volume III: Techniques of scientific computing (Part 1). Numerical methods for solids (Part 1). Solution of equations in \({\mathbb R}^n\) (Part 2), pp. 465–622. North-Holland, Amsterdam (1994)

    Google Scholar 

  24. Crisfield, M.A.: Nonlinear finite element analysis of solids and structures: Advanced topics, vol. 2. Wiley. xiv, Chichester (1997)

    MATH  Google Scholar 

  25. Jankovich, E., Leblanc, F., Durand, M., Bercovier, M.: A finite element method for the analysis of rubber parts, experimental and analytical assessment. Comput. Struct. 14, 385–391 (1981)

    Article  MATH  Google Scholar 

  26. Chen, J., Satyamurthy, K., Hirschfelt, L.: Consistent finite element procedures for nonlinear rubber elasticity with a higher order strain energy function. Comput. Struct. 50(6), 715–727 (1994)

    Article  MATH  Google Scholar 

  27. Tabaddor, F.:Rubber elasticity models for finite element analysis. Comput. Struct. 26, 33–40 (1987)

    Article  MATH  Google Scholar 

  28. Peng, S.H., Chang, W.V.: A compressible approach in finite element analysis of rubber-elastic materials. Comput. Struct. 62(3), 573–593 (1997)

    Article  MATH  Google Scholar 

  29. Rueter, M.: Error controlled adaptive finite element methods in large strain hyperelasticity and fracture mechanics. Inst. für Baumechanik und Numerische Mechanik, Hannover (2003)

    Google Scholar 

  30. Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner Studienbücher: Mathematik. B. G. Teubner, Stuttgart (1996)

    Google Scholar 

  31. Si, H.: Tetgen (2008), http://tetgen.berlios.de

  32. Sebastian, G., Stein, A.: Regional approaches to the reconstruction of the lip region. Facial. Plast. Surg. 13, 125–135 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walczak, L., Weichert, F., Schröder, A., Landes, C., Müller, H., Wagner, M. (2009). Evaluating the Impact of Shape on Finite Element Simulations in a Medical Context. In: Magnenat-Thalmann, N. (eds) Modelling the Physiological Human. 3DPH 2009. Lecture Notes in Computer Science, vol 5903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10470-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10470-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10468-8

  • Online ISBN: 978-3-642-10470-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics