Abstract
We describe in this paper a new hybrid approach for mathematical function optimization combining Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) using Fuzzy Logic to integrate the results. The new evolutionary method combines the advantages of PSO and GA to give us an improved PSO+GA hybrid method. Fuzzy Logic is used to combine the results of the PSO and GA in the best way possible. The new hybrid PSO+GA approach is compared with the PSO and GA methods with a set of benchmark mathematical functions. The new hybrid PSO +GA method is shown to be superior than the individual evolutionary methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angeline, P.J.: Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 601–610. Springer, Heidelberg (1998)
Angeline, P.J.: Using Selection to Improve Particle Swarm Optimization. In: Proceedings 1998 IEEE World Congress on Computational Intelligence, Anchorage, Alaska, pp. 84–89. IEEE, Los Alamitos (1998)
Back, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Oxford University Press, Oxford (1997)
Castillo, O., Valdez, F., Melin, P.: Hierarchical Genetic Algorithms for topology optimization in fuzzy control systems. International Journal of General Systems 36(5), 575–591 (2007)
Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE transactions on neural networks 5(1) (January 1994)
Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43 (1995)
Emmeche, C.: Garden in the Machine. The Emerging Science of Artificial Life, p. 114. Princeton University Press, Princeton (1994)
Germundsson, R.: Mathematical Version 4. Mathematical J 7, 497–524 (2000)
Goldberg, D.: Genetic Algorithms. Addison Wesley, Reading (1988)
Holland, J.H.: Adaptation in natural and artificial system. The University of Michigan Press, Ann Arbor (1975)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)
Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms: Concepts and Designs. Springer, Heidelberg (1999)
Montiel, O., Castillo, O., Melin, P., Rodriguez, A., Sepulveda, R.: Human evolutionarymodel: A new approach to optimization. Inf. Sci. 177(10), 2075–2098 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Valdez, F., Melin, P., Castillo, O. (2009). Fuzzy Logic for Combining Particle Swarm Optimization and Genetic Algorithms: Preliminary Results. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds) MICAI 2009: Advances in Artificial Intelligence. MICAI 2009. Lecture Notes in Computer Science(), vol 5845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05258-3_39
Download citation
DOI: https://doi.org/10.1007/978-3-642-05258-3_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05257-6
Online ISBN: 978-3-642-05258-3
eBook Packages: Computer ScienceComputer Science (R0)