iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-05258-3_39
Fuzzy Logic for Combining Particle Swarm Optimization and Genetic Algorithms: Preliminary Results | SpringerLink
Skip to main content

Fuzzy Logic for Combining Particle Swarm Optimization and Genetic Algorithms: Preliminary Results

  • Conference paper
MICAI 2009: Advances in Artificial Intelligence (MICAI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5845))

Included in the following conference series:

Abstract

We describe in this paper a new hybrid approach for mathematical function optimization combining Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) using Fuzzy Logic to integrate the results. The new evolutionary method combines the advantages of PSO and GA to give us an improved PSO+GA hybrid method. Fuzzy Logic is used to combine the results of the PSO and GA in the best way possible. The new hybrid PSO+GA approach is compared with the PSO and GA methods with a set of benchmark mathematical functions. The new hybrid PSO +GA method is shown to be superior than the individual evolutionary methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angeline, P.J.: Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 601–610. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Angeline, P.J.: Using Selection to Improve Particle Swarm Optimization. In: Proceedings 1998 IEEE World Congress on Computational Intelligence, Anchorage, Alaska, pp. 84–89. IEEE, Los Alamitos (1998)

    Chapter  Google Scholar 

  3. Back, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Oxford University Press, Oxford (1997)

    Google Scholar 

  4. Castillo, O., Valdez, F., Melin, P.: Hierarchical Genetic Algorithms for topology optimization in fuzzy control systems. International Journal of General Systems 36(5), 575–591 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE transactions on neural networks 5(1) (January 1994)

    Google Scholar 

  6. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43 (1995)

    Google Scholar 

  7. Emmeche, C.: Garden in the Machine. The Emerging Science of Artificial Life, p. 114. Princeton University Press, Princeton (1994)

    Google Scholar 

  8. Germundsson, R.: Mathematical Version 4. Mathematical J 7, 497–524 (2000)

    Google Scholar 

  9. Goldberg, D.: Genetic Algorithms. Addison Wesley, Reading (1988)

    Google Scholar 

  10. Holland, J.H.: Adaptation in natural and artificial system. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  11. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

  12. Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms: Concepts and Designs. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  13. Montiel, O., Castillo, O., Melin, P., Rodriguez, A., Sepulveda, R.: Human evolutionarymodel: A new approach to optimization. Inf. Sci. 177(10), 2075–2098 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Valdez, F., Melin, P., Castillo, O. (2009). Fuzzy Logic for Combining Particle Swarm Optimization and Genetic Algorithms: Preliminary Results. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds) MICAI 2009: Advances in Artificial Intelligence. MICAI 2009. Lecture Notes in Computer Science(), vol 5845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05258-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05258-3_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05257-6

  • Online ISBN: 978-3-642-05258-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics